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Abstract 

Increasing numbers of individuals describe themselves as feeling lonely, regardless of age, 

gender or geographic location. This article investigates how social media users self-disclose 

feelings of loneliness, and how they seek and provide support to each other. Motivated by 

related studies in this area, a dataset of 22,477 Twitter posts sent over a one-week period was 

analyzed using both qualitative and quantitative methods. Through a thematic analysis, we 

demonstrate that self-disclosure of perceived loneliness takes a variety of forms, from simple 

statements of “I’m lonely”, through to detailed self-reflections of the underlying causes of 

loneliness. The analysis also reveals forms of online support provided to those who are feeling 

lonely. Further, we conducted a quantitative linguistic content analysis of the dataset which 

revealed patterns in the data, including that ‘lonely’ tweets were significantly more negative 

than those in a control sample, with levels of negativity fluctuating throughout the week and 

posts sent at night being more negative than those sent in the daytime. 
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Feeling Alone Among 317 Million 

Others: Disclosures of Loneliness on 

Twitter 

1. Introduction 
Recent reports (British Red Cross, 2016; Office for National Statistics, 2018a, 2018b) have 

highlighted the alarming levels of loneliness experienced by individuals across the globe 

(McPherson et al., 2006) and across all age groups (Griffin, 2010; Office for National Statistics, 

2018a), with documented potential impacts on individuals’ health (S. Cacioppo et al., 2014; 

Eichstaedt et al., 2015; Holt-Lunstad et al., 2015, 2010). Given the ubiquitous nature of 

technology, unsurprisingly there has been a great deal of attention on the potential relationship 

between technology and issues such as loneliness (Nowland et al., 2018). Extant research that 

considers the relationship between feelings of loneliness and the use of technology can usually 

be placed into one of two broad categories: those that consider the role of technology in 

potentially causing or exacerbating feelings of loneliness (e.g. (Holt-Lunstad et al., 2010; 

Martončik & Lokša, 2016), and those that consider how technology might be used to prevent 

loneliness or help individuals to cope and seek support (Kivran-swaine et al., 2014; Naslund et 

al., 2016). Indeed, some studies have gone so far as to suggest that Facebook use is linked to 

increased satisfaction with life in certain populations (Basilisco & Cha, 2015). The need for 

further research in this area has also been highlighted (Anderson et al., 2012; Singleton et al., 

2016) in the light of the continuing growth and development of social media sites. The focus 

thus far has been on specific countries, with previous studies suggesting interesting findings in 

their data – such as temporality, but not exploring it fully within their own analyses.   
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Social media sites, such as Twitter, have been identified as affording particular qualities 

that enable people with both transient and enduring feelings of loneliness to express themselves 

and receive reassurance from others (Kivran-swaine et al., 2014). Our work approaches Twitter 

from the theoretical perspective that social networking services (SNSs) collectively represent 

a socio-technical space, which is shaped by the individual platform affordances. This is broadly 

aligned with MacKenzie & Wajcman (1999), who assert that “social shaping” not only 

underpins the development of new technologies, but shapes their use “as inextricably part of 

society”. Within online research, Hine (2015, 2017) asserts there has been a cultural shift which 

has firmly embedded online activity as part of the everyday, in all aspects of life, with Pink 

(2012) framing this as ‘digital everyday normality'. As a result of the increasing socially 

normative use of Twitter, tweets within this work are treated as mediated communication as 

part of an everyday practice of use. This places the support seeking behaviors and support 

derived from online interaction on Twitter as both potentially effective and having a significant 

potential for efficacy in interactions, where offline support structures are perceived as poor or 

absent for individuals. For large scale social phenomenon, this positions Twitter data as having 

significant use in the exploration of loneliness and isolation. Rather than seek to determine 

whether Twitter use causes, exacerbates, or alleviates feelings of loneliness, this article 

presents an investigation into the contemporary self-disclosure of loneliness on Twitter. Our 

work extends this existing understanding to examine, in further detail, the patterns that are 

present in disclosure related to the time and day that posts were originally sent, and the seeking 

and provision of support.   

We posit the following questions, which we seek to address within this article. 

RQ 1. What topics are typically discussed on Twitter, regarding loneliness? 

RQ 2. How is Twitter used in the seeking and provision of supporting regarding 

loneliness? 
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RQ 3. When discussing feeling of loneliness, how does the language used by social 

media users differ from posts regarding other topics? 

RQ 4. How, and to what extent, does the time and day that posts are shared have an 

impact on the language used within them? 

a. To what extent do ‘lonely’ posts sent at the weekend differ from those sent 

during the week? 

b. To what extent do ‘lonely’ posts sent at night differ from those sent during 

the day? 

To address these questions, we collected a dataset of 22,477 Twitter posts over a period 

of one week. To analyze this data we combine a qualitative analysis of the tweet content, and 

a quantitative linguistic content analysis. In doing so, we seek to highlight nuances and patterns 

apparent within the disclosure of loneliness, as well as changes in the use of language within 

and across the days. 

The findings from our study offer a number of contributions to the emerging discourse 

on loneliness and technology. First, we offer a deepened understanding of how social media 

users disclose and discuss feelings of loneliness through these sites. Second, we note the 

importance of temporality in usage behavior patterns, noting differences in relation to both the 

day of the week, and time of day that users share their experiences of loneliness. Third, we 

highlight the wide-ranging audiences that these platforms provide to people who experience 

loneliness, and how this provides a support network for those who explicitly express these 

feelings. Finally, we make suggestions for areas of future work, building on the findings of this 

study. 

2. Related Work 
Loneliness may stem from the lack of an immediate other, or low participation within social 

groups, with (Perlman & Peplau, 1981) defining loneliness as “…the unpleasant experience 
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that occurs when a person’s network of social relations is deficient in some important way”. 

Frequently described as a social phenomenon, loneliness is closely aligned, or indeed directly 

linked, with negative health outcomes (S. Cacioppo et al., 2014; Eichstaedt et al., 2015; Holt-

Lunstad et al., 2010, 2015). It is therefore important to explore the experiences of people who 

self-disclose that they are lonely as this can offer insights into how to understand, manage and 

mitigate against these experiences. In recent years, researchers have demonstrated the ways in 

which social media platforms may act as a site for the disclosure of personal information, with 

research focusing, for example, on areas such as political expression (Haridakis et al., 2017; 

Mahoney et al., 2016), health and wellbeing (De Choudhury, Counts, et al., 2013; De 

Choudhury, Gamon, et al., 2013; Jamison-Powell et al., 2012; Scanfeld et al., 2010; Walther 

et al., 2016), as well as the more mundane aspects of everyday life (Hu et al., 2014; Le Moignan 

et al., 2017). In the context of health, disclosure on social media not only represents an outlet 

for individuals seeking support (Walther et al., 2016) but may also provide valuable 

information for public health purposes such as identifying the spread of flu-like symptoms 

(Paul et al., 2014; Sadilek et al., 2012), identifying symptoms of depression (De Choudhury, 

Gamon, et al., 2013; Moreno et al., 2011; Park et al., 2012), and infodemiology – using such 

data in order to support and inform public health decisions and policies (Eichstaedt et al., 2015; 

Eysenbach, 2009). For example, Ranney et al. (2016) observed a statistically significant 

relationship between the number of alcohol-related tweets per hour from a given geographical 

area, and the number of alcohol-related visits to the emergency department in that area. They 

suggest that real-time monitoring of such content may help in predicting surges in the number 

of visitors to local emergency departments. 

Self-disclosures may also be beneficial to the individuals concerned (Choi & Toma, 

2014; Gable et al., 2004; Ma et al., 2016). Social psychology research highlights the benefits 

that the self-disclosure of worries, anxieties and negative experiences can have on an 
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individual’s mental and physical health (Chu et al., 2010; Pennebaker, 1997). In the context of 

loneliness, such benefits might also include increasing feelings of connectedness (Quinn & 

Oldmeadow, 2013) – a primary human need (Ryan & Deci, 2000) – and reducing the active 

mental work required by keeping such feelings to oneself (Lane & Wegner, 1995). Given that 

feelings of loneliness, by definition, imply the perceived unavailability of significant others to 

disclose to, social networking services like Twitter potentially become increasingly relevant as 

a space for individuals to disclose their feelings to others.  

However, there are also inherent risks involved in self-disclosure. Sharing content of a 

personal nature online has associated risks, including loss of privacy which may increase 

vulnerability (Bazarova, 2012; Spottswood & Hancock, 2017). Additionally, there are issues 

of managing disclosure across multiple groups and audiences in an appropriate fashion 

(DiMicco & Millen, 2007). It is also possible that some users may come to regret their decision 

to share such information online. Wang et al. (2011), for example, provide a comprehensive 

summary of the types of regret experienced by Facebook users. These include negative 

audience response or causing offense, aligned with subsequent concerns over perceptions of 

self by others, posting in a state of heightened emotion, (termed a “hot state”) or while in a 

state altered by alcohol or drug consumption, without regard for consequences. Additionally, 

regret of disclosure may stem from unintentional transgression of group social boundaries. 

Work in relation to Twitter (e.g. Sleeper et al., 2013) similarly identifies that heightened 

emotional states and tweets which are cathartic in nature can often lead the original author to 

regret posting those messages. Furthermore, Wang et al. (2014) highlights that Twitter 

networks can be comprised of diverse audience types, leading to ‘context collapse’. This is 

identified by Marwick & boyd  (2011) as potentially problematic for users to navigate content 

sharing on a platform where multiple audience groups are present simultaneously, as content 

may not be welcomed or deemed appropriate by all those present. 
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Whilst disclosure of a personal nature can thus lead to regret, it can also impact the 

‘success’ of individual Twitter account holders. Hutto et al. (2013) demonstrate, in a 

longitudinal study, that accounts which contain a higher proportion of negative content have a 

reduced rate of follower gain compared to those which share positive content, which is 

associated with higher rates of follower gain. This is indicative that as a social platform, 

audience responses to disclosure may be influenced by the regularity or severity of the 

disclosure of an individual’s feelings of negativity, social isolation or loneliness. At the same 

time, however, sharing behaviors on social media platforms are often shaped by the expectation 

that content will be read by followers, ultimately provoking some form of engagement. In 

studying this dynamic, in contrast to Hutto et al’s work, Bernstein et al. (2013) suggest that 

users display an awareness of the “imagined audience” when formulating tweets and as a result 

they often self-moderate the content they share. 

In a study closely related to our own, Kivran-swaine et al. (2014) studied disclosures 

of loneliness on Twitter. Deriving their search criteria from previously published expressions 

of perceived social isolation (Russell et al., 1978), they used these complete phrases as search 

terms with the Twitter Search API, though they acknowledged that this may well have excluded 

other expressions of loneliness. As part of their analysis, posts were qualitatively analyzed with 

three main categorical dimensions being highlighted: the context of loneliness, the temporal 

bounding of the loneliness, and the interaction (or lack of interaction) with others.   

This notion of temporality, and its importance, is not a new phenomenon when studying 

loneliness, Young (1982) emphasizes that feelings of transient loneliness (as opposed to 

enduring or chronic loneliness) emerge and die out quickly. Further to this, in relation to social 

media, De Choudhury et al. (2013) state that “patterns of posting…bear the potential to offer 

evidence as to how a person is affected by life events”. Social media users often share posts as 

a ‘stream of consciousness’, sharing experiences as events are happening, or they are 
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experiencing particular feelings (Wang et al., 2011). As such, it is feasible that social media 

users’ online behavior may indeed be reflections of changes in the users’ experiences, mental 

state, and life events in almost real-time. If so, it is important to understand this further, given 

that when individuals seek support or ask questions online, the timeliness of response is a key 

factor in individuals judging a response’s quality (Cheung et al., 2008; Walther & Jang, 2012), 

and as such, adopting any advice or answers provided. Through a greater understanding of this 

behavior, effective support and intervention systems could be designed and implemented, with 

support available to those seeking it, when they are likely to need it. 

As outlined previously, the focus of the study presented here is the self-disclosure of 

loneliness on social media, with particular reference to Twitter. Building on previous work, we 

note the importance of temporality when studying loneliness within our study, but extend this 

work through the consideration of when the expressions of loneliness occur – both in terms of 

the day of the week, and also the time of day that the posts were sent. While there is existing 

research in this area, such as Kivran-swaine et al. (2014), we seek to complement their earlier 

findings through the use of a broader search criterion, analyzing a dataset using both qualitative 

and quantitative approaches, and considering our results in relation to the day and time that the 

original posts were created. 

3. Study Design & Data Analysis 
This study sought to expand upon previous work by focusing on how disclosures of loneliness 

may differ based on the time of day, or day of the week in which they were shared. For example, 

one specific aim was to highlight if disclosures of loneliness were more prolific when 

individuals may be alone, or when they feel that society suggests that ‘the norm’ is to be 

spending time with friends – such as socializing at the weekend. 
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Through a combination of quantitative and qualitative methods, we were able to 

analyze and understand patterns of behavior within a large-scale dataset, while still developing 

an understanding of the nuances of the content of individual posts. 

3.1. Data Collection 

Using the Twitter Search API (Twitter, 2018), a total of 22,477 original tweets were collected 

over a 7-day period in May 2017 (retweets were ignored at the collection stage) based on a 

query of the search term ‘lonely’.  Only public tweets are made accessible through the Twitter 

API, while tweets sent from private, or otherwise restricted accounts, are not shown in search 

results. While previous research, such as Kivran-swaine et al. (2014), collected specific phrases 

such as ‘I’m so lonely’ and ‘I feel left out’, we elected to collect tweets that contained a single 

word. In doing so, we sought to collect and characterise a wider range of loneliness self-

disclosures. The resulting dataset will be referred to as the “lonely tweets” dataset hereafter. 

Table 1 shows the number of tweets collected per day, as well as in each timeframe. As Twitter 

provides the user’s time zone, and the ‘offset’ in relation to the UTC timestamp, it is possible 

to make adjustments so that the days and times reflect the local time in which the tweet was 

posted. This allows for a more accurate comparison between the time and days that tweets were 

initially posted. 

3.2. Qualitative Analysis of Tweets 

Qualitative analysis of Twitter content allows for a deeper understanding of the material being 

shared – particularly in cases where the context is nuanced, sarcastic, colloquial, or abbreviated 

to meet the character limit imposed by Twitter. However, an analysis of the full dataset would 

be highly resource intensive, and as such, following practice in the related past literature (e.g. 

Brooker et al., 2015; Jamison-Powell et al., 2012; Johansson & Andreasson, 2017), a subset of 

data was chosen for in-depth analysis. A randomly selected subset of tweets was selected, with 

each of the time blocks for each day, i.e. Thursday 4-8pm, proportionally represented (1 in 25 
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tweets for each time slot were selected). This was done as to ensure fair representation of the 

data sample across the entire collection period and resulted in a representative sample of 804 

tweets. 

3.3. Data Analysis 

The 804 tweets were analysed using the method described in (Braun & Clarke, 2013), using 

two independent coders. The 804 tweets were initially read by one researcher several times, 

with notes made where appropriate. Following this, an initial list of codes that summarised 

individual tweets was generated, and revisited, revising where appropriate. In order to facilitate 

the remainder of the analysis, an initial codebook was created, which included the applied 

codes, a description of each code, along with examples of tweets for each code. Two 

researchers then considered the codebook; after discussion between the researchers, the 

codebook was revised and refined where necessary, leaving a final list of 23 codes (see Table 

2, right column). At this point it was necessary to assess the reliability of the codes within the 

wider dataset, so a second subset of tweets, consisting of the 35th tweet in each day and time 

block was selected, resulting in a further set of 575 tweets for analysis. The researchers then 

independently applied the codes to the second subset of tweets. The use of codes was then 

examined for inter-rater reliability using Cohens’ Kappa, producing a result of κ = 0.804 

indicating a significant level of agreement (Landis & Koch, 1977). 

As a final step in the analysis, all of the codes were examined once again to identify 

common themes across codes. This led to the formation of seven first-order themes. Following 

further examination and synthesis of the data, these first-order themes were collapsed into three 

second-order themes. Of these three second-order themes, two are relevant for the purposes of 

this particular study (“Loneliness and Self”, and “Loneliness and Others”). Tweets falling 

within themes deemed to be irrelevant to the focus of this study will not be explored or detailed 
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extensively within this article. Table 2 shows the relationship between the first-order and 

second-order themes, and the codes used during the initial analysis of the data.  

4. Results of Qualitative Analysis 
Here we outline the results of our qualitative analysis. We divide our analysis into the two 

relevant second-order themes and their five first-order themes. 

4.1.  Second Order Theme 1: Loneliness and Self 

Within this second-order theme, there are three first-order themes: ‘Personal Disclosure’, ‘Fear 

and the Unknown’, and ‘Reflecting on Loneliness’. Tweets that have been grouped within these 

themes demonstrate the social media user reflecting on their own experience of loneliness, be 

that disclosing that they are lonely, sharing their fear of being lonely in the future or reflecting 

on loneliness in general. 

Personal Disclosure: Tweets within this theme include those where the author is 

disclosing their own personal experience of loneliness – be that a past or present, constant or 

intermittent feeling. This theme also includes tweets where the author is disclosing that they 

do not feel lonely. Those pertaining to a current state were observed to be brief statements 

without additional detail, such as “lonely as f”,  “Lonely and sad” and “Nights are lonely and 

so are the days.”.  This short style of disclosure was also observed in tweets which specifically 

described a constant feeling of loneliness, with the permanent nature of the feeling adjoined to 

the simple disclosures found in current state disclosure; “I am lonely all of the time” or “I 

always feel that I am lonely”. 

Within this theme, there is a wide array of degrees of personal disclosure, from short 

and simple statements of “I’m lonely”, through to more detailed accounts of how individuals 

are spending a vast majority of their time using social media, as means of supplementing their 

“…lack of any actual meaningful human connection”.  
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Fear and the Unknown: This content relates to self-disclosure of a potential future 

state, rather than disclosing feelings of loneliness that have been, or are being, experienced. As 

such, this content may reflect individuals attempting to receive support or guidance before they 

feel lonely, rather than during or after feelings of loneliness. These included statements overtly 

referencing fear such as “Scared to be lonely”. These were not limited to singular statements 

on behalf of an individual, with collective fear also referenced in “we are all scared to be 

lonely”. 

Reflecting on Loneliness: Within this theme, the content of tweets focuses on personal 

reflections on loneliness – be that the author’s own specific experiences (e.g. “Everyone I 

graduated with is either engaged, pregnant, or giving birth and I’m over here alone and 

lonely”), or more general reflections on loneliness (e.g.“Being what you call lonely is viewed 

as something negative, or less healthy but I disagree. Its liberating”). 

Some of these tweets equate loneliness with being single, suggesting that being in a 

relationship and having a partner would end or reduce their feelings of loneliness. This may 

highlight the cultural weight placed upon romantic attachment, examples of such content 

includes: “…my boyfriend goes to sleep early and I start to feel lonely because he's the only 

one I talk to”, and “Couples always disgust me, they remind me of how lonely I am”. 

Similarly, others relate their loneliness to a temporary absence of partners, family 

members or close friends as well as a lack of emotional connection to those around them: “it 

is so easy to be surrounded by people and yet still feel lonely” and “The very worst kind of 

being lonely is when no one truly sees you for who you really are”. 

Rather than merely sharing that they are lonely, tweets within this theme demonstrate 

that Twitter users are using the platform as a means of reflecting on their own loneliness and 

sharing these reflections with a wider audience. These reflections have the potential to be of 

benefit to both the author (Pennebaker, 1997; Pennebaker et al., 2015) and also others who are 
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reading the posts and who may also be suffering from feelings of loneliness (Bazarova, 2012). 

It is also possible that these posts could have a negative impact on the author, in particular in 

situations where the author is hoping for, or expecting, a response but does not receive one. 

There is also evidence of displacement using humour to express loneliness in a less overt 

manner, with tweets such as “I'm not saying that I'm lonely, but I did spend the last 15 minutes 

having a conversation with the wall” and “Owning a car with four doors makes me feel lonely 

lol”. 

4.2. Second Order Theme 2: Loneliness and Others 

Within this second-order theme, there are two related first-order themes: ‘Direct Support’ and 

‘Indirect Support and Information Dissemination’. Tweets that have been grouped within these 

two themes represent social media users utilising these technologies to provide support, in 

some form, to other users of the platform that may be feeling lonely. 

Direct Support: Tweets within this theme include those where there is evidence of 

social media users providing direct support to others that may be suffering from feelings of 

loneliness. There are many potential benefits to such support mechanisms, not only for those 

being supported, but also for those providing support. 

Examples of this direct support include content such as “@user I won’t feel lonely. I 

won’t feel lonely. I won’t feel lonely. #positiveAffirmations”. Others seek to demonstrate that 

feeling lonely is not unusual, and that many people go through periods of feeling lonely, such 

as “@user It’s ok, we understand. Feeling lonely is just a normal part of life. *hug*”. While 

both of these examples demonstrate the direct support that is being provided to other users, 

they also serve to demonstrate the subtle variations in how this support may be provided. 

This support may take the form of ‘reciprocal self-disclosure’ (Pan et al., 2018), where 

individuals are sharing their own experiences of loneliness as a means of supporting others – 

benefitting not only the person they are supporting (Bazarova, 2012), but also themselves 



  14 

(Pennebaker, 1997; Pennebaker et al., 2015), for example: “@user I feel the same, nobody 

wants to hangout with me, which makes me depressed and lonely”. In this post, the replying 

user is not only providing support, but also disclosing their own experience of loneliness at the 

same time. 

This direct interaction between social media users, which might be considered as a form 

of support network, may also lead to an increased feeling of connectedness between those that 

are interacting. Described as a primary human need (Johansson & Andreasson, 2017; Ryan & 

Deci, 2000), this potential for an increased feeling of connectedness would be a further benefit 

for those discussing feelings of loneliness, as well as the more immediate support gained from 

other social media users. 

Indirect Support and Information Dissemination: Tweets included within this theme 

include those that are sharing information and facts regarding loneliness, or may include quotes 

that relate to being, or feeling, lonely. 

These tweets may represent an effort to indirectly support those that may be feeling 

lonely, as well as raising awareness with other social media users about loneliness and 

surrounding issues. Such tweets often include reference to recent research, or case studies, that 

highlight the extent of this loneliness ‘epidemic’: “Psychologists have found that sending and 

receiving text messages can actually boost your mood when you’re feeling lonely”. Whilst not 

being directed at any particular user, such posts may provide indirect support to individuals, as 

they are shown that they are not the only ones that may be feeling lonely or are provided with 

links to external resources that may be relevant to them, such as studies and other support 

platforms and resources. 

5. Quantitative Linguistic Content Analysis 
As noted earlier, with a collected dataset of 22,477 tweets, a qualitative analysis of the entire 

dataset would be impractical. As such, tools such as Linguistic Inquiry and Word Count 
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(LiWC) (Pennebaker et al., 2015) provide a suitable means for analysing such large datasets. 

LiWC “…reads a given text and counts the percentage of words that reflect different emotions, 

thinking styles, social concerns, and even parts of speech.” (Pennebaker et al., 2015). However, 

in order to better understand how specific these findings are to the loneliness tweets dataset, 

we also analysed a dataset which consisted of randomly collected tweets. This dataset, referred 

to as the ‘random sample’ hereafter, was collected from the Twitter Streaming API, sampled 

evenly over the 7-day period, resulting in a comparable dataset of 21,105 tweets. Collecting 

this random sample allows comparisons to be made between the two datasets and will highlight 

differences between tweets where individuals express feelings of loneliness, and tweets that 

represent a more generic use of the platform. In doing so, we further build on the work of 

Kivran-swaine et al. (2014). 

In the sections that follow, we outline our analysis methods, before discussing the 

results of this analysis, their relation to other research and their broader implications. 

5.1. Data Analysis 

The content of tweets included in the lonely tweets dataset was analysed using LiWC 

(Pennebaker et al., 2015). Results generated by this software indicate the percentage of the 

analysed text that contains particular classes of words. Such classes include demonstrations of 

negative and positive emotion, anger, sadness and anxiety, as well as past, present and future 

tenses (see Table 3). Independent t-tests were deemed to be appropriate for comparing results 

between the two datasets (Lumley et al., 2002).  

To provide a greater level of detail, the lonely tweets dataset was further broken down, 

and analysed in terms of the day of the week when the tweet was sent (see Table 4), as well as 

the time of day (see Table 5). As discussed earlier, the Twitter API provides the UTC 

timestamp of when the tweet was created, as well as an ‘offset’ value, determined by the user’s 

time zone. This allowed for the analysis to be based on the presumed local time when the tweet 
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was sent. Table 1 shows the number of collected tweets, based on the date they were sent, as 

well as the time of day they were posted.  

To test for differences between the two datasets, content analyses were conducted using 

LiWC (Pennebaker et al., 2015). The use of pronouns – both personal and impersonal, as well 

as verbs and auxiliary verbs was compared between the two datasets. Further to the word 

classes detailed above, a sentiment analysis was carried out – detailing the use of words 

demonstrating a positive or negative sentiment. Finally, the use of tense and the utterance of 

temporality within the tweets was analysed – LiWC also reports on the use of the past, present 

and future tenses in the analysed texts. 

5.2. Comparison to Random Dataset 

Detailed in Table 3, statistically significant differences are demonstrated across each of the 

root word classes (p < .001), with each word class being more prevalent in the lonely tweets 

dataset than the random dataset. Further, the lonely tweets dataset contained a statistically 

significant (p < .001) and higher prevalence of negative words when compared to the random 

sample dataset. When comparing the prevalence of positive word use between the two datasets, 

there was no significant difference between the two collected datasets.  

There are well documented links between loneliness and health – both physical (e.g. 

(Holt-Lunstad et al., 2015, 2010) and mental (e.g. J. T. Cacioppo et al., 2006). In order to 

determine the extent to which disclosure of loneliness on social media might also include these 

aspects, we analysed the use of the following word roots as defined by LiWC (Pennebaker et 

al., 2015): ‘health’, ‘feeling’, ‘anger’, ‘sadness’, and ‘anxious’. As demonstrated in Table 3, 

there is a significant (p < .001) difference between the two datasets, with the lonely tweets 

dataset including a higher rate of use than the random sample. Whilst other word categories 

contributed to the overall negativity expressed within the tweets, the level of expression of 

sadness is similar to the presence of negative sentiment.  



  17 

The greater use of the present tense in the lonely tweets compared to the random tweets 

highlights that users are more likely to be sharing their emotional state in, perhaps, almost real 

time. This might reduce the level of self-moderating (Bernstein et al., 2013) that occurs, which 

in turn could cause feelings of regret (Kaur et al., 2016; Wang et al., 2011; Xie & Kang, 2015) 

if the user, on reflection, feels that they may have over-shared. Such disclosures could be 

defined as self-concept self-disclosures, which have been documented as encouraging higher 

levels of engagement in a support-seeking environment (Pan et al., 2018). This suggests that, 

rather than merely stating that they are lonely, social media users may be deliberately sharing 

more personal information and doing so in such a way that they are actively trying to seek 

support from others. 

5.3. Variations by Day 

In previous sections, we have noted statistically significant differences between the ‘lonely 

tweets’ dataset and the ‘random dataset’ – such as the length of the tweet, and the level of 

negativity expressed within the tweets. There are also notable differences within the lonely 

tweets dataset on a day-to-day basis. 

Table 4 demonstrates, for example, that Monday is by far the ‘angriest’ day of the week 

(see also, Figure 1), with statistically significant differences between Monday and every other 

day, with p-values ranging from p < .001 (Thursday, Saturday) to p = .019 (Tuesday). Further, 

the expression of negative sentiment also differs over time, Table 4 shows that, on average, 

tweets sent on Saturday, Sunday or Monday (see also, Figure 2) demonstrated higher levels of 

negative sentiment than those sent in the rest of the week.  

5.3.1. Variations between the weekend and weekdays 

Table 4 also highlights a general trend for results to be noticeably different on a weekend 

compared to the rest of the week. Comparing tweets posted at the weekend (Saturday, Sunday) 

to the rest of the week highlights two difference in tweeting behaviour. First, users posting 



  18 

about loneliness during the week do so using more characters (p < .001) and words (p = < .001) 

than during the weekend. Further, these tweets typically express higher levels of anger (p = 

.024), whilst also using more auxiliary verbs (p = .040). Second, despite demonstrating higher 

levels of anger during the week, tweets are significantly more negative at the weekend (p = 

.018) with a corresponding increase in sad tweets (p < .001); related to this, there is also a 

marked increase in the expression of feelings during the weekend (p = .010). 

5.3.2. Variations by Time of Day 

Table 5 demonstrates differences in the content of tweets, based on the time of day that they 

are sent, broken down into 4-hour timeslots. There are notable differences based on the time of 

day that users are posting; midnight to 4am, for example, is the most negative time of the day 

(see Figure 3), with significant differences to every other timeslot, particularly 8am-noon, 

noon-4pm and 4pm-8pm (all p < .001). This same timeslot is also the most person-centred (see 

Figure 4), with the use of pronouns at the highest level within those 4 hours compared to the 

other timeslots; the most significant differences are with 8am-noon and noon-4pm (p < .001). 

5.3.3. Variations between night and day 

As demonstrated previously, and in Table 5, there is a general trend for values to differ in the 

night (i.e. 8pm – 8am) than during the day (i.e. 8am – 8pm). Here we compare these two time 

periods and demonstrate the level and significance of differences between the two. 

In a similar finding to the previous weekend comparisons, tweets sent during the day 

contain significantly more characters (p < .001) and more words (p < .001). These daytime 

tweets also contain a higher amount of positivity (p = .001).  

Tweets sent during the night, however, are much more negative than those sent during 

the day (p < .001), whilst also including a much higher use of pronouns, both personal (p < 

.001) and impersonal (p < .001), as well as being more focused on the present (p < .001). In 
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conjunction with this, there is a higher prevalence of health-related words, and expression of 

feelings during the night.  

5.3.4. Variations by Qualitative Theme 

Previously we detailed the process by which the content of a subset of the data was qualitatively 

analysed, with content codes grouped and arranged into three over-arching themes: “Loneliness 

and Self”, “Loneliness and Others”, and “Irrelevant to Focus of Study”. Table 6 shows the 

results of a quantitative linguistic content analysis of tweets falling into the two relevant 

themes, and the significance of the differences between the two. 

 There are notable differences between the two main themes of interest in this study. For 

example, tweets within the “Loneliness and Others” theme are significantly longer than 

“Loneliness and Self” tweets – both in terms of character count (p = .001) and word count (p 

= .002). Further, these tweets are more positive (p = .024) and focus more on the future (p = 

.039), as well as being more active, containing a higher proportion of verbs (p = .001). 

Conversely, “Loneliness and Self” tweets have a higher rate of ‘sadness’ in their content (p = 

.013) 

6. Discussion 

Here we discuss the overall findings of this study, with reference back to our original research 

questions, as well as implications that these may have in terms of informing future studies in 

this, or related, areas. 

First, and in answer to our first research question, the results of our analyses 

demonstrate that individuals are utilising social media platforms, in this case Twitter, to 

disclose personal feelings of loneliness. This is not in itself surprising, and indeed has been 

highlighted by prior social computing research (Kivran-swaine et al., 2014).  

 However, we did note that disclosures vary in depth, from simple statements of “I’m 

lonely” through to more descriptive posts. Such disclosures highlight the potential usefulness 
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of social media to individuals in such situations where they, by definition of feeling lonely, do 

not perhaps have friends and family in close proximity with whom they feel they can disclose 

their feelings, in an effort to help them. Further, this range of disclosure suggests that there 

may be individuals who begin by self-disclosing their loneliness through a simple statement, 

but over time, as network connections develop, and confidence in their online audience grows, 

may utilise social media for more in-depth self-disclosures in an effort to receive more support 

from others. Whilst our dataset only covers a 7-day period, a future study, conducted over a 

longer time period, may reveal users where this is the case. 

Second, and in response to research question two, we have demonstrated that Twitter 

is being used as a reciprocal support network, with people not only stating “I’m lonely”, but 

also actively seeking out support, and providing support to other social media users. In some 

cases, this took the form of reciprocal self-disclosure (Pan et al., 2018), where users are sharing 

and discussing their own previous experiences of loneliness as a means of providing direct 

support to other users who are currently sharing their own feelings of loneliness. Further studies 

in this area, if conducted over a longer time period, may again demonstrate social media users 

whose behaviour changes and develops over time, as they receive support or positive response 

from their social media audience. 

Research question three relates to the linguistic differences between our ‘lonely’ dataset 

and the control dataset. Our findings demonstrate statistically significant differences between 

the two. In particular, lonely tweets were more negative, using fewer characters, and expressing 

more anger. 

This stark contrast between the two datasets demonstrates that discussions of loneliness 

on Twitter differ from the more general use of Twitter, particularly in terms of the language 

being used. This reinforces the findings of earlier studies, such as De Choudhury et al., (2013) 
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and  Kotikalapudi et al., (2012), which looked at utilising individuals’ social media posts as 

indicators for symptoms of depression. 

Fourth, the results of our quantitative linguistic content analysis, as well as the posts-

per-day and posts-per-timeframe (see Table 1, Table 4, Table 5), demonstrate that user 

behaviour differs in relation to the time of day and day of the week; and in doing so, address 

research question four. Tweets sent at weekends and at night are generally shorter, sadder and 

more negative in terms of content, while making more references to feelings and emotions. 

With social sharing often occurring concurrently, or on the same day as a triggering event (Choi 

& Toma, 2014), this suggests that users may be making use of Twitter as a means of reflecting 

on their own feelings at that time, sharing how they are feeling lonely at the weekend – a period 

of time where, from a Western-centric viewpoint, it is more common to have time away from 

work or study and as such, socialising with others is perceived to be a cultural norm. In contrast 

to this, users are taking to social media during the week to post angry tweets related to 

loneliness 

As such, future work should consider these behavioural patterns over a longer 

timeframe, and in relation to major calendar events and holidays, where feelings of loneliness 

might be assumed to be further exacerbated. 

This demonstrates a need to consider the wider context (including time and day) where 

Twitter content is being posted. This further reinforces the findings of previous research 

(Ranney et al., 2016) that suggested that real-time monitoring of social media could be useful 

in predicting surges in visitor numbers to local emergency departments. While we are not 

suggesting that there are such correlations in our data, further studies could investigate this idea 

further, by analysing loneliness online over a longer period of time, and how user behaviour 

changes on a day-to-day basis, or in relation to specific calendar events that might normally 

infer social activity (such as national holidays or New Year’s Eve). 
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7. Limitations 

The work presented in this paper has some limitations that could be addressed in further studies. 

First, we only consider a single social media platform – Twitter. Disclosure and discussion of 

feelings of perceived loneliness is, of course, not limited to just a single social media platform. 

However, the affordances of Twitter are such that posted content may be broadcast to a much 

wider audience than, for example, Facebook. This may result in receiving replies and support 

from individuals who are not explicitly within a user’s network of friends or followers. Second, 

we only consider content that contains the word ‘lonely’ – further studies should extend criteria 

to other words and phrases that might indicate users’ disclosures of loneliness. Finally, the 7-

day data collection period means that we were unable to study the development of individual 

users’ behaviour over an extended time period.  

8.  Conclusion 
In this article, we have examined the ways in which feelings of loneliness are articulated and 

self-disclosed on Twitter. In doing so, we contribute to the growing fields of work in this area; 

we highlight the importance of temporality to the expression of loneliness, linking it with 

periods when individuals may be most acutely aware of their lack of social or emotional 

support. This appears aligned to periods concordant with traditional periods of high social 

activity such as Friday nights and weekends. In contrast to this, Twitter appears to function not 

only as a platform to disclose feelings of being lonely, but functions to also facilitate extending 

support and allowing interaction with those disclosing feelings of isolation. Both this 

interaction, or the cathartic nature of expressing negative emotion may lead to a reduction in 

distress associated with low social contact. These findings invite a range of future research in 

social technologies, particularly those which function in real-time, as current disclosure of 

feeling lonely was prominent in our results.  
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Day # Tweets Timeframe # Tweets 

Wednesday 3,466 Midnight – 4am 3,833 
Thursday 3,068 4am – 8am 2,944 

Friday 3,015 8am – Midday 3,446 
Saturday 3,672 Midday – 4pm 3,540 
Sunday 3,638 4pm – 8pm 4,166 
Monday 2,652 8pm - Midnight 4,548 
Tuesday 2,966  

Table 1. Number of tweets collected, by day and by timeframe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second-Order Theme First-Order Theme Content Code 

Loneliness and Self 

Fear & The Unknown Fear of Being Lonely 

Personal Prediction of Future Loneliness 

Personal Disclosure 

Personal Disclosure of Past Loneliness 

Personal Disclosure of Present Loneliness 

Personal Disclosure of Constant or Permanent Loneliness 

Personal Disclosure – Not Feeling Lonely 

Reflecting on Loneliness 

Personal Thoughts or Comment on Loneliness 

Linking Loneliness to Love or Relationships 

Equating Loneliness with Being Single 

Humour or Sarcasm Relating to Loneliness 

Loneliness and Others 

Direct Support Commenting or Sharing Opinion of 3rd Party Loneliness 
Supporting Others in Loneliness 

Indirect Support and Information Dissemination Information & Factual 

Quotes Relating to Loneliness 

Irrelevant to Focus of Study 

Misuse or Misrepresentation of Loneliness Vernacular for “by myself” 

Used as Part of an Insult or Abuse 

Irrelevant 

Advert for External Resource 
Referencing Other Media – Lyrics, Videos etc 

‘Lonely’ is Part of Twitter Username 

Used when Describing Current Affairs / News / Politics etc 

Creative Writing / Fan Fiction 

Irrelevant or Inappropriate Content 

Unclear Meaning 

Table 2. Hierarchy of content codes and themes. 
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Variable Group Mean (Standard Deviation) t p r 
Lonely Tweets Random Sample 

Character Count 77.250 (38.460) 98.850 (46.542) -51.352 <0.001 0.245 
Word Count 14.100 (7.175) 14.120 (6.566) 0.661 0.508 0.003 

Word Class 
Pronouns 13.665 (11.362) 3.820 (6.706) 106.381 <.001 0.509 

Impersonal Pronouns 2.968 (5.171) 1.337 (3.671) 36.720 <.001 0.190 
Verbs 15.541 (11.505) 5.230 (7.865) 105.617 <.001 0.490 

Auxiliary Verbs 9.053 (9.350) 2.467 (4.890) 88.906 <.001 0.456 
Sentiment Analysis 

Negative Sentiment 14.419 (13.507) 0.974 (4.137) 135.198 <.001 0.660 
Positive Sentiment 2.908 (5.348) 2.795 (6.193) 1.975 0.250 0.010 

Word Root Type 
Health 0.546 (2.508) 0.358 (2.043) 8.302 <.001 0.042 
Feeling 1.629 (4.670) 0.294 (1.655) 38.281 <.001 0.236 
Anger 0.851 (3.296) 0.276 (2.220) 20.629 <.001 0.110 

Sadness 12.290 (12.330) 0.189 (1.829) 137.733 <.001 0.689 
Anxious 0.614 (2.797) 0.304 (2.508) 11.808 <.001 0.059 

Use of Tense 
Past Tense 1.568 (3.954) 1.010 (3.070) 15.843 <.001 0.081 

Present Tense 12.227 (10.177) 4.237 (6.619) 93.902 <.001 0.452 
Future Tense 1.095 (3.176) 0.457 (2.304) 23.208 <.001 0.120 

Table 3. Comparison of quantitative linguistic content analysis results. All variables, with the exception of positive sentiment 
and word count, have statistically significant differences between the ‘lonely tweets’ dataset, and the random sample. 

Variable Lonely Tweets – Individual Days – Group Mean (Standard Deviation) 
Wednesday Thursday Friday Saturday Sunday Monday Tuesday 

Word Class 

Pronouns 14.112 (11.572) 13.779 (11.351) 13.759 (11.323) 13.328 (11.326) 14.015 (11.316) 13.265 (11.330) 13.278 (11.271) 

Personal Pronouns 11.015 (10.316) 10.784 (10.047) 10.786 (10.031) 10.352 (10.132) 11.047 (10.109) 10.512 (10.093) 10.233 (9.893) 

Impersonal Pronouns 3.082 (5.287) 2.984 (5.149) 2.956 (5.140) 2.971 (5.237) 2.966 (5.188) 2.741 (4.948) 3.033 (5.183) 

Verbs 15.883 (11.433) 15.554 (11.435) 15.536 (11.394) 15.494 (11.638) 15.462 (11.543) 15.209 (11.784) 15.591 (11.304) 

Auxiliary Verbs 9.348 (9.428) 9.115 (9.303) 9.254 (9.325) 8.828 (9.282) 8.889 (9.638) 9.043 (9.293) 8.931 (9.102) 

Sentiment Analysis 
Negative Sentiment 14.020 (12.931) 13.983 (12.864) 14.301 (13.552) 14.741 (14.141) 14.745 (14.209) 14.826 (13.623) 14.286 (12.951) 

Positive Sentiment 2.919 (5.341) 2.932 (5.199) 2.940 (5.432) 2.724 (4.983) 3.144 (5.689) 2.818 (5.270) 2.857 (5.263) 

Word Root Type 

Health 0.501 (2.208) 0.630 (2.880) 0.476 (2.239) 0.549 (2.505) 0.548 (2.456) 0.539 (2.643) 0.583 (2.624) 

Feeling 1.660 (4.441) 1.561 (4.476) 1.548 (4.362) 1.678 (4.843) 1.824 (5.042) 1.498 (4.489) 1.562 (4.887) 

Anger 0.825 (3.267) 0.740 (2.993) 0.879 (3.345) 0.744 (3.095) 0.806 (3.423) 1.130 (3.709) 0.900 (3.251) 

Sadness 12.009 (11.817) 11.875 (11.706) 12.105 (12.364) 12.801 (13.026) 12.656 (12.964) 12.520 (12.464) 11.946 (11.659) 

Anxious 0.609 (2.834) 0.615 (2.688) 0.653 (2.874) 0.568 (2.721) 0.575 (2.723) 0.573 (2.693) 0.720 (3.046) 

Use of Tense 

Past Tense 1.674 (4.093) 1.659 (4.057) 1.519 (4.007) 1.496 (3.857) 1.542 (4.005) 1.502 (3.844) 1.579 (3.781) 

Present Tense 12.462 (10.230) 12.075 (9.990) 12.138 (9.999) 12.324 (10.406) 12.126 (10.201) 11.983 (10.456) 12.419 (9.913) 

Future Tense 1.110 (3.090) 1.233 (3.402) 1.163 (3.407) 1.059 (3.066) 1.079 (3.236) 1.071 (3.080) 0.949 (2.919) 

Table 4. Quantitative Linguistic Content Analysis Result, by Day. Changes in language use can be seen throughout the week. 
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Variable Lonely Tweets – Time Blocks – Group Mean (Standard Deviation) 

0-4h 4-8h 8-12h 12-16h 16-20h 20-24h 
Word Class 

Pronouns 14.561 (11.481) 13.828 (11.731) 12.336 (10.954) 13.055 (11.240) 13.822 (11.374) 14.141 (11.299) 

Personal Pronouns 11.425 (10.222) 10.712 (10.240) 9.592 (9.710) 10.288 (9.971) 10.776 (10.196) 11.107 (10.123) 

Impersonal Pronouns 3.129 (5.318) 3.099 (5.435) 2.743 (4.918) 2.753 (5.011) 3.028 (5.128) 3.028 (5.211) 

Verbs 16.671 (11.865) 15.491 (11.570) 14.087 (11.362) 14.975 (11.306) 15.745 (11.379) 15.985 (11.397) 

Auxiliary Verbs 9.836 (9.860) 8.896 (9.330) 7.910 (8.831) 8.571 (8.910) 9.280 (9.504) 9.530 (9.395) 

Sentiment Analysis 

Negative Sentiment 15.729 (14.616) 14.697 (13.419) 13.354 (12.695) 13.824 (13.514) 13.966 (12.626) 14.818 (13.856) 

Positive Sentiment 2.767 (5.259) 2.941 (5.413) 3.419 (5.929) 2.828 (5.166) 2.890 (5.290) 2.695 (5.080) 

Word Root Type 
Health 0.610 (2.929) 0.595 (2.574) 0.474 (2.184) 0.496 (2.303) 0.487 (2.371) 0.607 (2.583) 

Feeling 1.772 (5.034) 1.718 (4.832) 1.457 (4.644) 1.541 (4.324) 1.579 (4.640) 1.694 (4.544) 

Anger 1.025 (3.777) 0.917 (3.542) 0.740 (2.905) 0.760 (3.033) 0.813 (3.189) 0.849 (3.261) 

Sadness 13.421 (13.486) 12.523 (12.259) 11.383 (11.537) 11.894 (12.562) 11.887 (11.378) 12.552 (12.513) 

Anxious 0.559 (2.750) 0.643 (2.804) 0.616 (2.845) 0.609 (2.773) 0.680 (2.910) 0.584 (2.707) 

Use of Tense 
Past Tense 1.543 (3.867) 1.637 (4.241) 1.377 (3.684) 1.680 (3.970) 1.614 (4.030) 1.558 (3.948) 

Present Tense 13.062 (10.423) 12.202 (10.121) 11.102 (9.887) 11.683 (9.948) 12.438 (10.273) 12.619 (10.218) 

Future Tense 1.218 (3.575) 0.996 (3.095) 1.015 (2.889) 1.049 (2.952) 1.137 (3.204) 1.112 (3.217) 

Table 5. Quantitative linguistic content analysis results, by time of day. Changes in language use can be seen throughout the 
day. 

 

 

 

 

 

 

 

 

 

 

 

 

Variable 
Group Mean (Standard Deviation) 

p-Value Loneliness and Self Loneliness and Others 
Character Count 77.480 (38.673) 91.180 (36.162) .001 

Word Count 14.140 (7.220) 16.400 (6.707) .002 
Word Class    

Pronouns 12.693 (11.311) 15.983 (9.673) .006 
Personal Pronouns 9.874 (9.898) 12.239 (8.782) .024 

Impersonal Pronouns 2.819 (5.051) 3.744 (4.846) .087 
Verbs 14.940 (11.251) 18.688 (10.030) .002 

Auxiliary Verbs 8.056 (8.707) 10.556 (7.585) .007 
Sentiment Analysis    

Negative Sentiment 13.907 (12.616) 11.754 (8.165) .031 
Positive Sentiment 2.665 (5.071) 3.966 (5.375) .024 

Word Root Type    
Health 0.646 (3.316) 0.404 (1.494) .463 
Feeling 1.914 (5.635) 1.894 (3.903) .972 
Anger 0.640 (2.492) 0.940 (3.104) .288 

Sadness 12.129 (11.572) 9.245 (5.700) .013 
Anxious 0.385 (2.162) 0.419 (1.813) .882 

Use of Tense    
Past Tense 1.317 (3.595) 1.477 (2.840) .667 

Present Tense 11.863 (9.880) 15.125 (9.234) .002 
Future Tense 0.940 (2.860) 1.628 (3.920) .039 

Table 6. Quantitative linguistic content analysis, by qualitative theme. Differences can be seen between the two 
qualitative themes, for example – ‘Loneliness and Self’ containing more negative sentiment than ‘Loneliness and 

Others’. 
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Figure 1. Mean value of 'Anger' word classes, per tweet, per day, showing Monday as the angriest day of the week. 

 

 

Figure 2. Mean value of negative sentiment per tweet, per day, showing Saturday, Sunday and Monday as far more negative 
than the rest of the week. 
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Figure 3. Mean value of negative sentiment per tweet, per timeslot, showing 0-4h as the most negative timeslot. 

 

 

 

Figure 4. Mean value, 'Pronouns' per tweet, per timeslot, showing 0-4h as the most person-centric timeslot. 
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