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This paper presents a psychophysiological construct of interest as a knowledge emotion and illustrates the 

importance of interest detection in a cultural heritage context.  The objective of this work is to measure 

and classify psychophysiological reactivity in response to cultural heritage material presented as visual 

and audio. We present a data processing and classification framework for the classification of interest. Two 

studies are reported, adopting a subject-dependent approach to classify psychophysiological signals using 

mobile physiological sensors, and the support vector machine learning algorithm. The results show that it 

is possible to reliably infer a state of interest from cultural heritage material using psychophysiological 

feature data and a machine learning approach, informing future work for the development of a real-time 

physiological computing system for use within an adaptive cultural heritage experience designed to adapt 

the provision of information in order to sustain the interest of the visitor. 
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1. INTRODUCTION 

The introduction of digital technology has the capability of increasing the amount of 

information provided to visitors at a museum or art gallery [Ott & Pozzi, 2011] and to 

enhance cultural heritage patrons‘ enjoyment and interaction with heritage sites and 

material [Holzinger et al. 2011] . Cultural heritage (CH) in all its forms is unique and 

irreplaceable, and the current generation holds the responsibility of preserving it for 

the benefit of future generations.  The challenge for digital technologies and 

technology design is to provide tools that will play a leading role in key issues such as 

providing access, increasing interaction, sharing knowledge and increasing the 

commercial viability of heritage institutions.  

In order to understand how the experience of the visitor may be augmented by 

technology, we must consider the nature and quality of CH experience. Previous 

research described CH experience in terms of satisfaction, which in turn is 

determined by positive expectations of the visitor being fulfilled [De Rojas & 

Camarero, 2008].  The optimal CH experience has been defined in conceptual terms 

as a ―total experience‖ that incorporates aspects of leisure, culture and social 

interaction [De Rojas & Camarero 2008, Pine & Gilmore 1998].  

The analysis of cultural heritage experience described by Pine and Gilmore (1998) 

describes four crucial drivers of visitor experience: 

1. entertainment (leisure, narrative) 

2. educational (knowledge transfer) 

3. aesthetics (pleasure) 

4. escapist (immersion) 

The first factor refers to capacity of cultural heritage artefacts to engage the visitor 

in a cognitive and affective manner. The educational component of the CH experience 

represents the process of knowledge transfer by which the visitor is informed about 
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artefacts. The aesthetic aspect of cultural heritage is perhaps the most difficult to 

understand because cultural artefacts are capable of evoking a range of aesthetic 

responses.  Previous definitions of aesthetic experience have emphasised both 

information processing and emotional responses [Leder et al. 2004], i.e. a cognitive 

perceptual process accompanied by a dynamic affective state.  The final factor 

(escapist) is associated with the degree to which the visitor is immersed within a 

mixed reality (i.e. past – present, new technology – ancient artefact).  The concept of 

immersion is often associated with a sense of presence in a three-dimensional virtual 

reality (VR) [Russell 2003]; however, the same concept may be applied to mixed 

reality systems such as augmented reality [Smithsonianmag 2012].  Immersion has 

clear implications for creating memorable experiences in CH contexts, particularly 

using technology to engage and engross the visitor in a particular artefact. 

This paper is concerned with technology that is designed to improve the CH 

experience via the adaptive provision of information.  Physiological computing 

systems monitor the physiology of the user and use these data as input to a 

computing system [Fairclough 2009].  The passive monitoring of spontaneous 

changes in psychophysiology indicative of the cognitive and emotional underpinnings 

of CH experience can be used to adapt information provision in real time. These 

systems are constructed around a biocybernetic loop [Fairclough & Gilleade, 2012] 

that describes the data processing pipeline from the translation of raw physiological 

data into control input at the interface. Passive monitoring of psychophysiology can 

be used to inform intelligent adaptation, allowing software to respond to the context 

of the user state in a personalised fashion. 

A physiological computing system could be created to monitor the CH experience in 

real-time by quantifying the state of the visitor and using these data to personalize 

the provision of information via a process of ―adaptive curation‖. To perform this act 

of personalization, the physiological computing system must be sensitive to those 

psychological dimensions underpinning the four facets of the CH experience.  It is 

proposed that activation, cognition and valence are essential elements of the CH 

experience with cognitive stimulation playing a primary role in the educational 

aspect and activation and valence capturing the emotional aspect of visitor 

experience.  Engagement of both cognitive stimulation and emotional processes may 

interact in order to yield the escapist or immersive facet of the experience. 

2. BACKGROUND  

The psychological conceptualisation of affective experience falls into two distinct 

theoretical domains.  Theories of basic emotions, e.g. happiness and fear, argue that 

emotional experience may be divided into discrete and independent categories 

[Ekman 1992].  This theoretical model contrasts with the circumplex model 

developed by Russell [Russell 1980, 2003] that represents emotional experience 

within a two-dimensional space consisting of arousal/activation (alert - tired) and 

valence (happy - sad).  Unlike the basic emotions theory, the circumplex model 

emphasises the association between different categories of emotional experience via 

the common dimensions of activation and valence. It is assumed that cultural 

artefacts that are stimulating, both in a cognitive and an emotional sense, will 

increase the activation level of the visitor and responses will span the range of 

positive or negative affect. 

The experience of a cultural heritage environment, regardless of whether it is a 

museum or gallery, is shaped by exploratory behaviour driven by the interest and 

curiosity of the visitor.  A physiological computing system must build upon the 
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psychological foundations of curiosity in order to capture the experience of the visitor.  

The concept of interest as a psychological entity was described by Berlyne [Berlyne 

1960] in terms of increased arousal and sensation-seeking, i.e. objects inspire 

curiosity via novelty and emotional conflict.  This concept was expanded by Silvia 

[Silvia 2008, 2010] to incorporate a cognitive dimension, i.e. interest driven by 

stimulus complexity and a need to comprehend the stimulus.  Both cognitive and 

emotional facets of interest were explored by Hidi and Renninger [Hidi & Renninger, 

2000] who referred to the former as a perceptual/representational processes 

accompanied by a sense of positive emotion derived from intellectual engagement.  

To encompass the affective and aesthetic aspects of the CH experience a conceptual 

model of interest was developed based upon a review of the literature.  This 

conceptual model consisted of six sub-components of perceptual representational 

processes, three of which are cognitive in nature and three emotional factors.  The 

cognitive sub-components are derived from Silvia [2010] and consist of: 

• Novelty, i.e. whether the object or exhibit was familiar or 

unexpected/unconventional/different 
• Comprehension, i.e. whether the representation/function of the object was 

clearly understood 

• Complexity, i.e. whether the perceptual complexity of the object is high or 

low 

The emotional components of interest owe much to the work of Berlyne [Berlyne 

1960] and are described as follows: 

• Activation/Arousal, i.e. whether consideration of the object was stimulating 

or not 

• Attraction, i.e. whether the object was viewed as either attractive or 

repellent 
• Valence, i.e. whether viewing the object made the person feel happy or sad 

The proposed model of interest distils the four elements of the Pine and Gilmore into 

two important elements, cognitive factors (education and knowledge transfer) and 

affective influences (aesthetics). Cognitive factors are defined here as stimulus 

features that drive the curiosity of the viewer, such as novelty and complexity, 

whereas affective influences are defined in a two dimensional space [Russell 1980].  

The complexity of the model was reduced into a simple form consisting of three 

dimensions for the purpose of operationalisation into psychophysiological measures, 

which were: 

• Cognition, which captures the novelty and complexity of the stimuli i.e. 

familiarity vs. unexpectedness and intricacy vs. simplicity  
• Activation, which captures how stimulating the stimuli is  

• Valence, to capture the level of emotional experience as positivity or 

negativity towards the stimuli 

Speaking purely in terms of a physiological computing system constructed around an 

inference of user ―interest‖ towards cultural heritage artefacts, understanding the 

underlying neural pathways, and their connections to psychophysiological states, 

during cultural heritage experiences is therefore important to the development of a 

functional biocybernetic loop. The inference of interest in this context concerns the 

creation of a one-to-many relationship in which two or more physiological elements or 
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measures are associated with one psychological element or construct [Cacioppo et al, 

2007]. 

Cognitive engagement (as cognition) can be quantified using Electroencephalography 

(EEG), particularly using alpha waves which have been associated with changes in 

cognitive load, i.e. a higher cognitive load is indicative of greater cognitive 

engagement (Goldman et al, 2002). Furthermore,  recent studies in the field of  

neuroaesthetics have used functional magnetic resonance imaging (fMRI), functional 

near infrared spectroscopy (fNIRS) and EEG to investigate the relationship between 

brain activity and cultural heritage experiences, in particular the perception of 

beauty and aesthetics [Nadal & Pearce, 2011]. This research contends that the 

prefrontal cortex (PFC), in particular Brodman‘s area (BA) 10 located in the dorsal 

PFC, plays an important part in the evaluation of artworks through attentional top-

down feedback that is the interpretation of sensory processing through cognitive 

engagement with the stimuli [e.g. Cupchik et al, 2009; Vessel et al, 2012; see Hahn et 

al, 2006 for a review]. In addition BA10 has also been associated with a wide range of 

cognitive process, ranging from the selection and judgment of stimuli held in short 

term memory [Petrides 1994] and working memory and attentional control [Ramnani 

& Owen, 2004] to reversal learning and stimulus selection [Dobbins et al 2002]; of 

specific import to the interest model is the association between BA10 and the 

‗elaboration encoding‘ of information into episodic memory [Henson et al. 1999, 

Wagner et al. 1998]. Another  area of the prefrontal cortex relevant to the inference 

of interest is  BA9, a part of the orbitofrontal cortex that has been associated with the 

motivational or emotional value of incoming information [Tataranni 1999, Rolls 

2000] and has been linked to frontal EEG asymmetry [Davidson 1993]. 

Moreover, it has also been noted that alpha activation in the PFC is reduced during 

aesthetic experiences1, particularly during the judgment of beauty [Cela-Conde et al, 

2011], making EEG an appropriate measure to encapsulate cognitive engagement in 

cultural heritage settings. Cognitive engagement can therefore be captured and 

quantified using spontaneous EEG measures of electrocortical activation in CH 

contexts. Additionally, the aspect of arousal or activation described by Berlyne (1960) 

and Russell (1980) can be captured through changes in the visitor‘s 

psychophysiology. Thus, cognitive engagement can be quantified through changes in 

psychophysiology and brain activation. In addition it has been hypothesised that 

greater activation of the left hemisphere of the PFC is associated with positive 

emotions whereas greater activation of the right hemisphere is linked to negative 

emotions [see Coan & Allen, 2004 for a review], thus the emotional response (as 

valence) to cultural heritage artefacts could also be captured using spontaneous EEG 

measures of electrocortical activation.  

The level of physiological stimulation (as activation) associated with the construct of 

interest can be captured via the level of skin conductance (SC) and supplemented by 

the measurement of heart rate (HR); SC is highly sensitive to sympathetic nervous 

system activity [Boucsein, 1992] and HR captures both sympathetic and 

parasympathetic components of the autonomic nervous system. Both SC and HR 

have been found to be appropriate measures to be used in CH environments 

[Tschacher et al, 2011].  

                                                 
1   EEG alpha activation has a converse relationship with brain activity (Goldman et al, 2002), i.e. higher 

alpha activity is associated with reduced brain activation. 
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Operationalising the conceptual model of interest as psychophysiological 

measurement is a key step in the development of a physiological computing system. 

Using the insights gained from this previous research to inform our choice of 

variables, we elected to operationalise the cognitive and valence components of the 

interest model via EEG monitoring of four cortical locations. Cognitive activation was 

represented by EEG activity at FP1 and FP2 corresponding anatomically with BA10, 

for valence F3 and F4 were used to represent BA9. The measurement of cognition 

was captured using spontaneous measures of electrocortical activation and it has 

been shown that there is an inverse relationship between the level of alpha activity 

and brain activation [Goldman et al. 2002], i.e. higher alpha activity is associated 

with reduced brain activation, thus cognition becomes a ratio derived from activity in 

the beta band (12-30Hz) divided by activity in the alpha band (7-11Hz) at each site. 

Valence, generally measured in psychophysiology using facial EMG [Cacioppo et al. 

1990], was deemed too intrusive for our needs, hence we captured valence by 

measuring the level of frontal hemispheric asymmetry expressed as a ratio, 

subtracting right from left hemispheric alpha band activity. It has been hypothesized 

that greater left activation of the prefrontal cortex is associated with positive affect 

whereas greater right side activation is linked to negative affect [Davidson et al. 

Lang 1995, Silbermann & Wiengartner 1998, Davidson 2004]. The activation 

component is measured via the level of skin conductance (SCL) and supplemented by 

measuring heart rate (HR); SCL is highly sensitive to sympathetic activity [Boucsein 

1992] and HR captures both sympathetic and parasympathetic components of the 

autonomic nervous system. This array of physiological measures is designed to 

deliver a multidimensional representation of the psychological state of interest and to 

quantify the interest level of an individual in a dynamic fashion. 

To test this concept, two experimental studies were designed to record and classify 

psychophysiological responses to CH material.  Our approach combines the interest 

model with psychophysiological data and a machine learning algorithm in order to 

distinguish between stimuli that are high or low with respect to the level of interest 

provoked in the viewer. 

3. DATA PROCESSING PIPELINE: THE IBIS FRAMEWORK 

In order to integrate the quantification of interest into a real-time adaptive system 

suitable for use in a cultural heritage context, the model must be proceduralised. 

Whereby, psychophysiological measurements are taken and features processed at one 

end (see Novak et al. [2012] for a survey of methods) and interest is classified as a 

binary determinant and/or scale then output to an adaptive process at the other. This 

process then determines the level of automation or interaction required based upon 

the goals of the CH institution or user, such as information provision determined by 

were the user sits on the interest scale or a steady state of ―edutainment‖ determined 

by consistent high interest classifications. Figure 1, displays the framework outlining 

the procedural flow of data, through measurement, processing and classification, 

from which classifier outputs can represent Interest as a Binary state or Interest as a 

Scale (IBIS) or both concurrently.  

 



                                                                                                                            A. Karran et al. 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

 
Figure 1 The IBIS procedural framework  

 

Procedurally, inputs from the physiological sensors are forwarded to component 

processors.  The processors derive features (activation, cognition and valence) from 

the raw sensor data. These features are forwarded to a classification engine, which 

then forks to create two classification processes. One classifies interest as a binary 

state, by fusing the physiological feature data into a single classification vector and 

training an SVM classifier using a composite class label derived from subjective 

judgments. The output from this is a representation of interest as either low or high.  

The second mode classifies interest as a scale by separating the physiological feature 

data into multiple classification vectors, representing each component of the interest 

model. These features are then associated with the subjective judgments given for 

each component. A classifier is trained for those components. The outputs from those 

classifiers can then be combined with propositional logic to represent interest on a 

scale ranging from very low to very high, i.e. IF activation = Low AND cognition = 

Low AND valence = Negative: INTEREST = Very Low.  

The procedural framework allows both classification models of a user‘s interest state 

to be completed concurrently, as a composite model (single classification vector) and a 

component model (multiple classification vectors). Thus, the IBIS framework outputs 

either a single binary high or low determination of interest, in the case of the 

composite model; or an interest in the case of the component model.  

Both forms of classification output can therefore be made available in real-time, as 

input to an adaptive engine which can perform system adaptions which have a 

concomitant effect on the measures of physiological activity, which are then classified 

as part of the biocybernetic loop. 
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4. EXPERIMENTAL STUDIES: ELICITATION OF INTEREST USING CULTURAL 
HERITAGE MATERIAL 

The first study set out to create a virtual heritage installation that replicated in part, 

a late 18th century Valencia kitchen mosaic (installed at the Museo Nacional de 

Artes Decorativas in Madrid). The second study was undertaken in situ at the 

Foundation for Art and Creative Technology (FACT) in Liverpool.  The former 

allowed participants in the study to stand in a natural fashion, while simultaneously 

viewing the mosaic and listening to audio narratives, specific to elements of the 

visual representation. The latter study was designed to present participants with 

audio and video content associated with a CH artefact. The studies were designed 

with the following goals:  

• To measure and classify psychophysiological reactivity in response to CH 

content presented as visual and audio stimuli 
• To define the psychophysiological variance as a two condition level of 

interest (high and low) consisting of three dimensions: activation, cognition 

and valence 
• To determine the optimum method of gathering subjective response data 

and observe its effect on classifier performance 
• To evaluate the performance of the Support Vector Machine (SVM) 

classification algorithm [Cortes & Vapnik 1995, Burges 1998, Platt 1999] 

for real-time application and the precision of the classifier, when compared 

to subjective response data 
• To evaluate the effect of differing feature sampling rates on classifier 

performance 

4.1.  Study one: A virtual heritage installation 

In this first study participants were asked to stand in a natural relaxed manner 

approximately 2 meters in front of a 3*2 meter projection screen, giving an image 

size of approximately 103 inches in width and 78 inches in height, giving a 130 inch 

4:3 aspect-ratio screen. This was followed by the audio-visual presentation of the 

Valencia kitchen, lighting was dimmed throughout the presentation and audio was 

reproduced via a Dolby 5.1 surround sound speaker arrangement, at moderate easy 

listening volume (approx. 70dB). The presentation of the kitchen stimulus was linear 

and timed to progress through the narrative, giving four stories (average 17s in 

length) consisting of 3 factual elements. The audio commentary was divided into four 

‗stories‘ consisting of three discrete ‗facts‘. The four stories were composed around 

elements in the still image, refreshments; the Lady of the House; the ceramics; and 

the dog. To draw the gaze of the viewer specific fragments of the mosaic were 

highlighted (see Figure 2.). When the presentation was completed each participant 

was asked to rate which two stories were perceived to be the most interesting out of 

the four that were presented. Stimulus presentation was performed to be analogous 

with common in use cultural heritage audio tour guides and all stimulus content was 

supplied by the participating cultural heritage institution (MNAD). 
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Figure 2. The stimulus image, highlighted sections correspond to the audio narration. (Image courtesy of 

the Museo Nacional de Artes Decorativas, Madrid) 

4.1.1. Procedures 

Instruction about the experimental procedure was given and participants were asked 

to complete a consent form in accordance with the approval of the University 

Research Committee, and then fitted with a mobile pouch to hold the Nexus sensor 

hardware at the hip. Electrodes for ECG and SCL were placed on the torso and 

fingers, a Biosemi sensor cap was fitted to the participant to ensure correct sensor 

placement (see Table 1.) and electrodes attached.  Participants were asked to stand 

in a relaxed position in front of the projection screen (shown in Figure 3.). This was 

followed by the audio-visual presentation of the Valencia kitchen.  

 
Figure 3. Participant wearing sensor hardware 

In this study ten participants 2 male 8 female, aged 19-75 took part, physiological 

responses from the autonomic system were measured during experimental sessions, 

using the Electrocardiogram (ECG, sampled from the torso) and SCL (second and 

forth finger, non-dominant hand) channels of the Mind Media Nexus X Mk II 

(sampled at 512Hz). Four channels of electroencephalographic (EEG) data were 

recorded using the Enobio (Starlab) wireless 4-channel sensor (sampled at 250Hz) 

with ground contacts on left ear lobe and inner ear. An EEG cap was fitted and 
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aligned to ensure sensor placement, electro-conductive gel was added to sites Fp1, 

Fp2, F3 and F4 [Jasper 1958] and electrodes attached. 

4.1.2. Feature extraction and classifier training schema 

Prior to commencing classification analysis of the physiological data, features were 

derived from measures of heart rate, skin conductance and EEG. For study one this 

resulted in a total of 9 features (Table 1) for each of the 12 stimulus events (average 

17s). These features were further subdivided into the three components of the 

interest model, such that each feature set created a unique classifier feature vector 

for each element. 

• Activation : Heart rate mean and standard deviation as inter-beat interval 

(iBi),  and for skin conductance level, mean and standard deviation  

• Cognition : Where the ratio :x  is expressed as β (power 12-30Hz) divided by  

α (power 8-12Hz) at Fp1, Fp2, F3, F4 (1) 

• Valence : Where the ratio :x is expressed as log natural of α (power), 

subtracting right from left hemispheric activity at sites (Fp1, Fp2) and (F3, 

F4) (2) 

   (
  
 

  
 )   (1) 

     (  
 )     (  

 )  (2) 

 
Component Measure Derivative 

Activation HR iBi-Mean iBi-Stdev 
 

SC Mean Stdev 

Cognition EEG Ratio  / FP1 Ratio  / FP2  Ratio  / F3 Ratio  / F4 

Valence Ratio α FP1-FP2 

Table 1 Features derived from each measure for each component of the interest model 

To train the classifier, class labels were derived from subjective judgments given by 

participants after each stimulus event and represented a ―forced‖ choice, in that, 

subjects were asked to pick 2 stories from the 4 presented as most interesting. These 

Subjective judgments (as high interest) were then associated with the 

psychophysiological data for six facts (2 stories) the remaining data were associated 

with a label of low interest, these labels were subsequently used for both the 

―composite‖ and ―component‖ model classifications. 

4.2.  Study two: Liverpool FACT study 

For study two, participants were asked to view a heritage presentation which took 

the form of multimedia presentations (audio, text, images and video) of the work of 

three living film directors, the stimulus content was developed by the participating 

heritage institution (FACT) as part of a developing exhibit. The presentation of each 

directors work lasted an average of 2 minutes 24 seconds; director one, 4 segments; 

director two, 6 segments; director three, 5 segments, for a total of 15 segments 

(approx. 7 minutes). The presentations were displayed on a 22‖ computer LCD screen 

and audio was reproduced through stereo speakers at an easy listening volume of 70 

dB [Arts 2010] placed on the floor approximately 45‖ in front of the participant. The 

presentation took the form of a documentary narrative, detailing the context, work 

and style of each director. Each narrative lasted approx. 30 seconds. After each 

director presentation was complete, participants were asked to provide subjective 

judgments using a provided questionnaire consisting of three Likert scales ranked 1 

– 10. These scales aligned to the 3 dimensions of the interest model; Activation: tired 
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passive 0 to activated alert 10; Cognition: low 0 to high 10; and Valence: sad angry 0 

to happy cheerful 10. The presentation order of the director narratives was 

counterbalanced within director; the first narrative presented was used to prime 

participant physiology and not included in the classification analysis. 

Director Context Work Style 

Krzysztof 

Wodiczko 

Video 
Audio 

Video 
Audio 

 Video 
Audio 

Audio Video 
Audio 

Video 
Audio 

Video 
Audio 

Content 
Artist work Artist 

work 
Interview Interview Interview Artist 

work 

Length(sec) 30 30 30 30 30 

Ken  

Loach 

Video 
Audio 

Video 
Audio 

Video 
Audio 

Image 
Audio 

Image 
Audio 

Image 
Audio 

Audio Audio 

Content 
Interview Interview Interview Artist 

work 
Artist 
work 

Other 
films 

On 
realism 

On 
politics 

Length(sec) 30 30 30 30 30 30 

Apichatpong 

Weerasethakul 

Video 
Audio 

Video 
Audio 

 Audio Video 
Audio 

Audio Video 
Audio 

Video 
Audio 

Content 
Artist work Artist 

work 
Artist 
work 

Artist 
work 

Interview 

Length(sec) 30 30 30 30 30 

Table 2 Stimulus types FACT study 

4.2.1. Procedures  

After instruction, participants were asked to complete a consent form, and then fitted 

with the Nexus sensor technology for ECG and SCL. The Enobio headset was then 

fitted for comfort and the dry sensors aligned for signal quality using the mobile 

headband supplied with the device; for this study no Biosemi sensor cap was required 

to guide correct sensor placement, all EEG recording was performed using frontal 

sites from the forehead. Participants were asked to sit in a relaxed position 

approximately half a meter in front of a large computer screen, following which 

counterbalanced stimulus content was presented. To determine the memorability of 

the material and provide class labels for the psychophysiological response data, 

participants were asked to complete a questionnaire consisting of three Likert scales 

ranked 1 – 10. These aligned to the 3 dimensions of the interest model; Activation: 

tired passive 0 to activated alert 10; Valence: sad angry 0 to happy cheerful 10; 

Cognition: low 0 to high 10. Participants were offered access to the content to aid in 

recall if needed during the subjective judgment period. 

For this second study 8 participants 5 male 3 female, aged 20-40 took part; 

psychophysiological response data was collected in a similar way to study one with 

the notable exception of EEG data. As this was an in-situ study, it was necessary to 

dispense with the EEG cap to allow for the ergonomic considerations of participants 

and speed of fitting. To this end, three channels of EEG data were recorded using the 

Enobio EEG sensor (StarLab) with mobile headband fitted and three dry electrodes 

placed at sites FP1, FP2 and FPz. 

4.2.2.  Feature extraction and classifier training schema 

For this study, as with study one, features were derived from measures of heart rate, 

skin conductance and EEG, resulting in a total of 8 features (Table 3) for an average 

of 10 stimulus events (approx. 30 seconds), data from the stimulus events that were 

used to prime participants psychophysiology were not included in the feature 

extraction. These features were then further subdivided into the components of the 

interest model. 
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• Activation : For heart rate (iBi), mean, and standard deviation; for skin 

conductance level, mean and standard deviation extracted every 2 seconds 

for each content stimulus epoch 
• Cognition : EEG data was derived from a fast Fourier transform of total 

amplitude spectra using a 2 second Hanning window for each stimulus 

epoch, where the ratio :x is expressed as β (power) divided by  α (power) at 

sites FP1, FP2, FPz (1) 

• Valence : Where the ratio :x is expressed as lognormal of α (power) 

subtracting right from left hemispheric activity at sites (FP2,FP1) (2) 

 
Component Measure Derivative 

Activation HR iBi-Mean iBi-Stdev 
 

SC Mean Stdev 

Cognition EEG Ratio  / FP1 Ratio  / FP2 Ratio  / FPz 

Valence Ratio α FP1-FP2 

Table 3 Features derived from each measure for each component of the interest model 

 

After each stimulus event participants were asked to complete a questionnaire 

consisting of three Likert scales ranked 1 – 10. These scales aligned with the 3 

dimensions of the interest model; Activation: tired passive 0 to activated alert 10; 

Cognition: low 0 to high 10; Valence: sad angry 0 to happy cheerful 10.  

To train the SVM classifier(s), two forms of class labels were derived from the 

questionnaire data, one which represents the ―composite‖ model (i.e. overall level of 

―interest‖) towards the stimulus material and one that represents the ―component‖ 

model (i.e. individual component response), both ranked high or low. To derive the 

binary class labels for the composite model classifications, the Likert scores for each 

participant and each stimulus event were normalised to the form: 

   ∑  (
       

         
)

   

 

Where    is the sum of subjective scores for each dimension of the interest model 

(activation, cognition and valence) combined, minC and maxC are the minima and 

maxima of the population of scores for each stimulus segment. The result    is a 

population of normalised scores. To set the threshold for class assignation, the 

median of this population was calculated. Above the median was labelled as high and 

below as low interest. Class labels for the component model, were derived by 

modifying the above method to remove the sum component, thus   becomes the 

population of normalised scores for each of the components.  

The result, in the first instance is a class label (either high or low), that represents a 

single subjective judgment as a composite ―interest‖ score for each stimulus segment. 

In the second instance, the class label (high or low) represents the level of response 

for each component (cognition, activation and valence) of the interest model 

individually. These labels are then associated with the psychophysiological data for 

that stimulus event and once combined, these data become the feature vectors used 

to train and test the classifiers for the composite and component modes. 
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4.3. Classification of the psychophysiological response: Cross-validation and Classifier 
Parameterisation 

For the two studies reported here, a subject dependent approach was taken to 

analysing and classifying the psychophysiological data to determine the recall 

accuracy of a support vector machine (SVM) classifier. The SVM classifier 

implemented for this study was part of the bioinformatics module within the Matlab 

(2011Rb) environment. To evaluate classifier performance, the derived feature data 

were grouped according to the three components of the interest model; such that each 

feature set created unique vectors for training the SVM classifier. Each component of 

the interest model has corresponding psychophysiological measures and feature 

derivatives of those measures (Table 1, 3) and class labels (either as ―composite‖ or 

―component‖ model training labels, Figure 1). This approach has a number of 

advantages, each feature vector is identified as a separate component of the model; 

feature sets can be combined as a fusion of features; thus the effect of each feature 

set or fusion of features on classifier class recall can be evaluated. For study one, a 

single classification trial was completed, consisting of subject dependent 

classifications using the composite training schema to determine classifier accuracy 

for individuals. For study two, in addition to the composite training schema a second 

classification trial using the component training schema was completed. 

Recall accuracy in the context of interest state classification for these studies is 

determined by cross-validating the SVM models over the training data, using the 

holdout method [Isaksson et al. 2008]. This method of cross-validation uses the entire 

dataset as both training and testing data by splitting the data arbitrarily according 

to criteria; that is, data is randomly assigned to either training or testing sets 

according to a ―set size‖ determined before classification (in this case 60% training, 

40% testing). The training dataset contains both the classification vectors 

(physiological observations) and its associated class labels (subjective judgments), 

testing the SVM model involves classifying the remaining (40%) unknown instances 

of test data, to determine recall accuracy. In a laboratory context, the labels 

(subjective judgments) associated with the test vectors (observations) are known to 

the experimenter but unknown to the SVM model, thus recall accuracy is calculated 

by comparing SVM model classification output (in terms of class) and with the known 

class labels, the result is how well the SVM model recalled the class of the 

observation. 

Recall accuracy is determined by the number of true classifications plus the number 

of true negative classifications divided by the number of true plus false negative 

classifications plus the number of true negative classifications in the form of: 

 

          
                                                 

                                                                       
 

 

Parameters for creating the SVM model for classification of the data consisted of the 

sequential minimal optimisation (SMO) [Platt 1998], to reduce the processing 

overhead associated with the minimisation problem, and the Gaussian radial basis 

function (RBF) kernel to provide a non-linear classifier (suitable for physiological 

data). To provide optimal values for the RBF kernel a loose grid search algorithm 

was developed and applied outside of the hold-out cross-validation procedure, see 

Algorithm 1. The hold-out cross-validation method has been shown to provide a more 

accurate assessment of classifier performance in comparison to k-fold cross-validation 

when applied to small datasets, such as those gained from real-time applications 

[Isaksson et al. 2008]. 
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ALGORITHM 1. Holdout Cross-validation using n by n grid search (loose) 

Input: Physiological data, Class labels, max Box-constraint, max Sigma 

Output: Optimal Box-constraint; Sigma; accuracy 

sigma = 0.1; 

box-constraint = 0.1;  

Counter = 1; 

Create array for box-constraint; sigma and accuracy values 

[optimalValues] ; 

for n to max box-constraint do 

 for n to max sigma do 

  Create two class problem 

  Create a 60/40 split of Physiological Data as training and test data with 

  associated Class labels: [train, test] 

Initialise a performance tracker 

  Get instances of training data: trainIdx = [train]; 

  Get instances of test data: testIdx = [test]; 

  Train SVM using training data, current value of box-constraint and sigma 

Test the SVM model using test instances of training data 

Gather performance statistics 

optimalValues  = [box-constraint, sigma, accuracy] 

  Counter = Counter + 1; 

sigma = sigma + 0.1; 

 end 

 sigma = 0.1 

 box-constraint = box-constraint + 0.1 

 Store performance statistics 

 Optimal = [optimalValues] 

end 

Find optimal settings 

Criteria = max[Optimal(accuracy)] 

Output optimal settings  

Parameters = [box-constraint, sigma, accuracy]   

 

5. RESULTS 

The results obtained from study one (the virtual heritage installation) are 

summarised in Table 4. These data represent the classifier recall accuracies from the 

subject-dependent classification of the feature data. The feature sets (activation, 

cognition and valence) were classified alone and in combination, to determine which 

permutation of features provided the best class recall accuracy over all participants. 

The data table indicates that the combination of activation and valence features 

afforded the best mean classification recall accuracy of 95% (σ 7.8). Similarly, the 

combination of activation and cognition or all three components together performed 

well with 92% (σ 11.2) and 93% (σ 8.3) respectively, showing a negligible difference in 

recall accuracy between these three feature vectors. However, a standard deviation 

above 10 shows the combination of activation and cognition to be moderately 

unstable across participants. Standard deviation in this context represents the 

inherent variability of mean classification accuracy across individuals, and can be 

seen as a measure of classifier stability, thus a low deviation value represents a more 

stable classifier across individuals.  This resulted in lower class recall accuracies for 

some participants, highlighting the influence of individual differences in 

physiological responses towards the heritage material. 

 



                                                                                                                            A. Karran et al. 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

Table 4 Classification recall accuracy (%) for all participants (P) presented across each source of 
psychophysiological data (activation (A), cognition (C), valence (V)) 

These significant classification rates offer strong evidence, that combining 

components of the interest model (such as activation and valence or the full 

component model) as feature vectors represents an effective method to classify level 

of interest in a cultural heritage setting. Comparing classifier recall accuracies from 

other feature sets, it can be seen that the combined features of activation and 

cognition are only 3% less accurate overall than those of the combined activation and 

valence feature sets, with a maximum of 92% mean recall accuracy.  

 

The results from the second experimental study carried out at FACT, are 

summarised in Table 5. These results represent the subject-dependent classification 

of the feature data from classifiers trained, using the composite model training 

schema of the IBIS framework. Similar to study one the combination of activation 

and valence presents with the highest mean recall accuracy, reporting 84.7% (σ 8.5). 

However, in this instance there can be seen a negligible increase in inter-subject 

classification accuracy variation for some participants, when compared to the 

previous study (95% σ 7.8). 

 

Table 5 Classification recall accuracy (%) for all participants (P) presented across each source of 
psychophysiological data (activation (A), cognition (C), valence (V)) 

Interestingly, in this classification trial the features of activation alone present the 

highest mean recall accuracy and classifier stability across participants (87.3%, σ 

7.4). The classifier created to combine activation, cognition and valence which 

represents the full interest model, achieves a mean recall accuracy of 77.0% (σ 10.6) 

and this high variation in accuracy is indicative of a classifier that is unstable across 

individuals. It is worth noting however, that the lowest reported accuracy still 

remains above chance levels.  

 

 

 

 

Features P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
Mean 

Recall 

Range  σ 

A 83 83 83 100 100 83 83 83 100 100 90 8.3 

C 100 83 83 83 67 83 67 83 83 100 83 10.4 

V 100 83 67 83 83 67 67 100 100 100 85 13.7 

A,C 83 67 83 100 100 100 100 83 100 100 92 11.2 

A,V 100 83 83 100 100 83 100 100 100 100 95 7.8 

C,V 100 83 83 83 100 67 83 83 83 100 87 10.0 

A,C,V 100 83 100 100 100 83 83 83 100 100 93 8.3 

Training Schema Composite Model  

Features P1 P2 P3 P4 P5 P6 P7 P8 
Mean 

Recall 
Range  σ 

A 96.5 93.6 95.2 80.0 87.0 73.8 84.2 88.0 87.3 7.4 

C 66.7 69.4 67.7 67.0 70.0 60.7 73.7 72.0 68.4 3.7 

V 61.4 66.1 66.1 67.0 62.0 62.3 68.4 63.0 64.6 2.5 

A,C 73.7 88.7 95.2 69.0 68.0 62.3 79.0 82.0 77.3 10.4 

A,V 93.0 91.9 95.2 82.0 85.0 67.2 79.0 84.0 84.7 8.5 

C,V 68.4 62.9 64.5 67.0 68.0 62.3 71.9 70.0 66.9 3.2 

A,C,V 71.9 88.4 93.6 69.0 68.0 60.7 80.7 84.0 77.0 10.6 
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Table 6 Classification recall accuracy (%) for all participants (P) presented across each source of 
psychophysiological data (activation (A), cognition (C), valence (V)) 

Table 6 displays the results from the second classification trial, in which classifiers 

were trained using the component model training schema of the IBIS framework. In 

this trial a classifier was created and trained for each component of the interest 

model using class labels specific to that component. The results show that in this 

instance the classification of the features of activation present a favorable mean 

recall accuracy (87.8%, σ 8.8). However, in this instance a degree of accuracy 

variation can be observed, indicative of minor instability across participants. The 

classifiers created for the features of cognition and valence both report low recall 

accuracy when compared to activation of 68.4% (σ 4.3) and 65.7% (σ 2.2) respectively. 

However, despite the lower accuracy output, both classifiers report above chance 

level classifications coupled with exceptionally low accuracy variance across 

participants, creating stable, if inaccurate classifiers. 

6. DISCUSSION 

The results from these studies provide evidence that the combination of 

psychophysiological features, coupled with a SVM classifier and a subject-dependent 

classification approach can reliably infer the ―knowledge emotion‖ interest in 

response to cultural heritage material. The results from the two studies indicated 

that the IBIS framework, which outlines a subject-dependent approach to 

psychophysiological measurement, data processing and two modes of classification, 

can achieve high classification accuracies coupled with low accuracy variance across 

participants when using the composite classification model. These results indicate, 

that participants responded physiologically to the content of the cultural heritage 

material. Moreover, these features when combined appear to add a larger degree of 

separation within the classification vector space between the two classes, allowing for 

more consistent classifications and an inference of a state of interest indicative of 

greater variation within the psychophysiological responses.  

A surprising finding was the lack of comparable classification accuracies between the 

classifiers created for the component model of the IBIS framework. Our expectation 

that the accuracy of the component classifiers would be analogous or superior for the 

FACT study was proven to be unfounded, with the component classifiers showing a 

marked decrease in classification accuracy when compared to study one. A possible 

explanation for this disparity could be the different methods used to assess subjective 

judgment during each study. In study one subjective judgment represents a ―forced‖ 

choice, which although blunt and with little consideration given to any detailed 

introspective assessment, may have been more representative of the recorded 

psychophysiological response. In study two, participants were given the opportunity 

to review the stimulus material post-hoc after each stimulus segment before giving 

subjective judgments about their levels of stimulation upon a Likert scale.  It is 

possible that the reported judgments are dissimilar to those represented by the 

psychophysiological data due to the process of subjective estimated provoked by the 

Likert scale. This difference could also account for the moderate drop in mean 

Training Schema Component Model  

Features P1 P2 P3 P4 P5 P6 P7 P8 
Mean 

Recall 

Range  σ 

A 89.5 98.4 95.2 90.2 71.7 78.7 96.5 82.5 87.8 8.8 

C 66.7 66.1 67.7 67.2 69.8 60.7 75.4 73.7 68.4 4.3 

V 66.7 64.5 66.1 65.6 62.3 63.9 70.2 66.7 65.7 2.2 
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classification accuracies between the two studies, as supervised learning algorithms 

only gain improvements in performance when trained with accurate training data 

[Ranni et al. 2007].  

A possible limitation within the studies reported which may have affected the 

component level classification accuracies for valence is one of handedness, which was 

uncontrolled for within both experiments. The effects of handedness on hemispheric 

lateralization as a means to measure affective response have not been thoroughly 

investigated and existing literature is inconclusive [Rodway et al. 2003]. One of the 

most consistent findings has been through studies using dichotic-listening 

paradigms. Handedness-related hemispheric lateralization differences have been 

noted in studies using music, words, and speech prosody as stimuli [McFarland & 

Kennison 1989; Bryden et al. 1991; Perria et al. 2001]. These dichotic listening 

studies have shown that right-handers‘ affective lateralization corroborates with the 

common ―valence hypothesis‖ (i.e. right hemisphere for negative affect, left 

hemisphere for positive), but that left-handers have opposite lateralization. These 

studies point to a possible confound which may have had an effect on the ratio 

measurement used as an index of affective response. A further limitation of the work 

concerns sample size, due to the complexity of the experimental procedures and 

length of data analysis, the pool of participants per study was small. This makes the 

results less generalisable than if a larger population of participants were used. 

However, the IBIS framework posited here is as a subject dependent methodology 

and is designed not for generalisability but rather for systems trained for individuals 

by individuals within the same session.  

This lack of comparable or increased classification accuracy appears to indicate that 

the component training schema is the less effective of the two modes of classification 

in terms of raw mathematical accuracy. Indeed, in the case of the FACT study, 

component level classification accuracies suffered significant decline of accuracy 

when compared to the first study. However, in theory the component model 

classification approach appears superior, as it offers a more nuanced inference of a 

user‘s level of interest, whereas the composite model offers a much less granular 

binary inference. Here we report only on the mathematical output accuracy of 

classifications using the SVM algorithm, and these classifications can be used ―as is‖ 

within a system that can utilise the binary (composite) inference of interest. 

However, to realize this potential and output interest upon a scale ranging from very 

low to very high; the component model classification output of the IBIS framework 

requires a secondary processing stage. 

 
Propositional Logic : Interest as a Scale  

IF AND AND Inferred Interest 

Activation + Cognition + Valence + Very High 

Activation + Cognition + Valence - High 

Activation + Cognition - Valence + High 

Activation + Cognition - Valence - Moderate 

Activation - Cognition + Valence + Moderate 

Activation - Cognition + Valence - Low 

Activation - Cognition - Valence + Low 

Activation - Cognition - Valence - Very Low 

Table 6 Propositional logic representing eight states of the interest scale 

This secondary processing stage would utilise the binary classification output from 

each component of the interest model, and apply propositional second order logic [De 

Morgan 1847] to map the series of binary outputs into an eight state model (Figure 

6), representative of an interest scale or ―experience‖. Such that, IF activation = High 
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AND cognition = High AND valence = Positive: INTEREST = high. These eight states 

of interest transpose well onto the IBIS framework, the states can be processed in 

parallel with composite model classifications and used separately or combined to 

inform an adaptive decision component to make changes to an interface or content in 

real-time.  Furthermore, the transposition of three binary classifications into eight 

states could potentially be used as the basis for a more comprehensive interaction 

and adaption model. This enhanced interaction and adaption model could allow CH 

institutions to aggregate more detailed visitor ―interest‖ statistics about installations 

and associated content and to create more memorable heritage experiences. 

Adaptions based on the scale level of interest, would inform adapt-no-adapt decision 

level logic leading to variable levels of content adaption that insert or take away 

content in order to elicit favourable high interest responses; for example, if the level 

of cognitive engagement is consistently low, insert more intellectually stimulating 

content to the interaction context (via the monitoring media tags and meta-level 

information about content). Not only would the IBIS framework drive an adaption 

model via a bio-cybernetic loop, but externally it would drive the content creation 

process, allowing CH institutions to monitor the impact of content on museum 

patrons and feedback into the system with content demographically apropos to 

knowledge transfer and entertainment goals. 

The accuracy floor, below which interactive systems using this approach within a bio-

sensing component would become unusable, is a topic of speculation at this point in 

our research. Finding the optimum balance between synthetic classification accuracy 

and quality of user experience is a topic worthy of further research, one which 

requires implementing the IBIS framework as a real-time bio-sensing component 

within an interactive system, then evaluating its performance using receiver 

operator characteristic techniques and real-time user feedback. This is currently 

work in progress and a real-time interactive heritage application is in development.  

We envision many possible applications of this approach within the context of 

cultural heritage, such as automated or semi-automated recommendation of cultural 

heritage content informed by real-time psychophysiological assessment (a digital 

curator) or ―interest‖ profiling involving implicit tagging of heritage material to build 

up heat maps that use interest as a basis to inform future interactions and build 

cultural heritage installations that imbue artefacts with a sense of modernity, whilst 

at the same time preserving any cultural and historical significance. The possibility 

of further commercialization also exists in the form of ―big data‖ i.e. bioinformatics 

processing; in that psychophysiological data coupled with survey data (such as 

nationality of user), gathered over an extended period from multiple users could be 

used for targeted advertising or demographic profiling purposes. However, to use 

these data in commercial projects, either a formally or informally would require both 

the consent of every user and careful consideration of the ethical implications of their 

use. 

The overarching goal of this research was to answer the questions ―Can we use 

physiological computing for adaptive information provision in a CH context?‖, ―Will a 

sustained state of interest using personalised information provision enhance the CH 

experience?‖ we tentatively posit an answer of yes. The results from the two studies 

presented here show that it is possible to reliably infer a state of interest from 

psychophysiological signals. However, in order for an interactive and adaptive CH 

physiological computing system to be fully realised, the proposed framework and 

approach we have discussed must be applied outside of the laboratory and restricted 

simulated environments and tested in the field.  To this end a real-time interest state 
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classification and information adaption system is under development. The success of 

this system will be contingent on overcoming a number of technical and user 

experience issues, such as those arising from naturalistic visitor behaviour, such as 

detecting artifacts within physiological signal acquisition caused by movement 

patterns (walking, acceleration and hand gestures etc.) and determining the effects of 

the relationship between the mathematical accuracy of the classifiers within the 

system and the perceived accuracy of the system by the user.   

7. CONCLUSION 

In this paper, we distil research in the field of cultural heritage experience to create a 

model of the ―knowledge emotion‖ interest, we operationalise the interest model as 

three components; activation, cognition and valence and detail subject-dependent 

methods for the measurement and capture of psychophysiological responses towards 

cultural heritage material. We introduce IBIS, a procedural framework which details 

the procedures involved inferring a users‘ interest state from measurement to 

classification using two classification schemas (composite and component) that can be 

run in parallel as part of a real-time bio-cybernetic loop. Two studies are reported 

here which utilise the elements of the IBIS framework and genuine cultural heritage 

material in an offline context, the results from study one (95% σ 7.8) and study two 

(87.3%, σ 7.4) show that it is possible to infer with a fair degree of accuracy a users‘ 

state of interest in cultural heritage material. We discuss the potential of the IBIS 

framework for use within a real-time adaptive information provision system and 

detail an interest scale which transposes the output from three binary classifiers onto 

an eight state scale using propositional logic.  
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