249 research outputs found

    Does Concomitant CABG Influence the Outcomes of Post-Myocardial Infarction Ventricular Septal Defect Repair?

    Get PDF
    Introduction: Ventricular septal defect (VSD) following myocardial infarction (MI) is a relatively infrequent complication with high mortality. Over time, understanding of the pathology and its management has resulted in improved outcomes; however, controversies remain. Objective: We sought to investigate the effect of concomitant coronary artery bypass graft (CABG) on outcomes following post-MI VSD repair. Methods: Electronic search was performed to identify all relevant studies published from 2000 to 2018. After assessment for inclusion and exclusion criteria, 66 studies were selected for the analysis. Data were extracted and pooled for systematic review and meta-analysis. Results: Average age was 68.7 years (95% CI 67.3-70.1) with 57% (95% CI 54-60) males. Coronary angiogram was available preoperatively in 94% (95% CI 92-96) of patients. Single-vessel disease was most common (47%, 95% CI 42-52) with left anterior descending coronary artery the most commonly involved vessel (55%, 95% CI 46-63). Concomitant CABG was performed in 52% (95% CI 46-57) of patients. Of these, infarcted territory was revascularized in 54% (95% CI 23-82). No significant survival difference was observed between those who had concomitant CABG versus those without CABG at 30 days (65%, 95% CI 58-72) vs (60%, 95% CI 47-72), 1 year (59%, 95% CI 50-68) vs (51%, 95% CI 41-61), and 5 years (46%, 95% CI 38-54) vs (39%, 95% CI 27-52) respectively. Discussion: Overall, concomitant CABG did not have a significant effect on survival following VSD repair, therefore, decision on revascularization should be weighed against the risks associated with prolonged cardiopulmonary bypass

    Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) which has been shown to increase the susceptibility of various bacteria to antimicrobials and demonstrated to have broad antimicrobial activity. This study describes transcriptome alterations in <it>S. aureus </it>strain COL grown with diclofenac and characterizes the effects of this NSAID on antibiotic susceptibility in laboratory, clinical and diclofenac reduced-susceptibility (Dc<sup>RS</sup>) <it>S. aureus </it>strains.</p> <p>Methods</p> <p>Transcriptional alterations in response to growth with diclofenac were measured using <it>S. aureus </it>gene expression microarrays and quantitative real-time PCR. Antimicrobial susceptibility was determined by agar diffusion MICs and gradient plate analysis. Ciprofloxacin accumulation was measured by fluorescence spectrophotometry.</p> <p>Results</p> <p>Growth of <it>S. aureus </it>strain COL with 80 μg/ml (0.2 × MIC) of diclofenac resulted in the significant alteration by ≥2-fold of 458 genes. These represented genes encoding proteins for transport and binding, protein and DNA synthesis, and the cell envelope. Notable alterations included the strong down-regulation of antimicrobial efflux pumps including <it>mepRAB </it>and a putative <it>emrAB/qacA</it>-family pump. Diclofenac up-regulated <it>sigB </it>(σ<sup>B</sup>), encoding an alternative sigma factor which has been shown to be important for antimicrobial resistance. <it>Staphylococcus aureus </it>microarray metadatabase (SAMMD) analysis further revealed that 46% of genes differentially-expressed with diclofenac are also σ<sup>B</sup>-regulated. Diclofenac altered <it>S. aureus </it>susceptibility to multiple antibiotics in a strain-dependent manner. Susceptibility increased for ciprofloxacin, ofloxacin and norfloxacin, decreased for oxacillin and vancomycin, and did not change for tetracycline or chloramphenicol. Mutation to Dc<sup>RS </sup>did not affect susceptibility to the above antibiotics. Reduced ciprofloxacin MICs with diclofenac in strain BB255, were not associated with increased drug accumulation.</p> <p>Conclusions</p> <p>The results of this study suggest that diclofenac influences antibiotic susceptibility in <it>S. aureus</it>, in part, by altering the expression of regulatory and structural genes associated with cell wall biosynthesis/turnover and transport.</p

    Interactive Effects of Climate Change with Nutrients, Mercury, and Freshwater Acidification on Key Taxa in the North Atlantic Landscape Conservation Cooperative Region

    Get PDF
    The North Atlantic Landscape Conservation Cooperative LCC (NA LCC) is a public-private partnership that provides information to support conservation decisions that may be affected by global climate change (GCC) and other threats. The NA LCC region extends from southeast Virginia to the Canadian Maritime Provinces. Within this region, the US National Climate Assessment documented increases in air temperature, total precipitation, frequency of heavy precipitation events, and rising sea level, and predicted more drastic changes. Here, we synthesize literature on the effects of GCC interacting with selected contaminant, nutrient, and environmental processes to adversely affect natural resources within this region. Using a case study approach, we focused on 3 stressors with sufficient NA LCC region-specific information for an informed discussion. We describe GCC interactions with a contaminant (Hg) and 2 complex environmental phenomena-freshwater acidification and eutrophication. We also prepared taxa case studies on GCC- and GCC-contaminant/nutrient/process effects on amphibians and freshwater mussels. Several avian species of high conservation concern have blood Hg concentrations that have been associated with reduced nesting success. Freshwater acidification has adversely affected terrestrial and aquatic ecosystems in the Adirondacks and other areas of the region that are slowly recovering due to decreased emissions of N and sulfur oxides. Eutrophication in many estuaries within the region is projected to increase from greater storm runoff and less denitrification in riparian wetlands. Estuarine hypoxia may be exacerbated by increased stratification. Elevated water temperature favors algal species that produce harmful algal blooms (HABs). In several of the region\u27s estuaries, HABs have been associated with bird die-offs. In the NA LCC region, amphibian populations appear to be declining. Some species may be adversely affected by GCC through higher temperatures and more frequent droughts. GCC may affect freshwater mussel populations via altered stream temperatures and increased sediment loading during heavy storms. Freshwater mussels are sensitive to un-ionized ammonia that more toxic at higher temperatures. We recommend studying the interactive effects of GCC on generation and bioavailability of methylmercury and how GCC-driven shifts in bird species distributions will affect avian exposure to methylmercury. Research is needed on how decreases in acid deposition concurrent with GCC will alter the structure and function of sensitive watersheds and surface waters. Studies are needed to determine how GCC will affect HABs and avian disease, and how more severe and extensive hypoxia will affect fish and shellfish populations. Regarding amphibians, we suggest research on 1) thermal tolerance and moisture requirements of species of concern, 2) effects of multiple stressors (temperature, desiccation, contaminants, nutrients), and 3) approaches to mitigate impacts of increased temperature and seasonal drought. We recommend studies to assess which mussel species and populations are vulnerable and which are resilient to rising stream temperatures, hydrological shifts, and ionic pollutants, all of which are influenced by GCC

    Interactive Effects of Climate Change with Nutrients, Mercury, and Freshwater Acidification on Key Taxa in the North Atlantic Landscape Conservation Cooperative Region

    Get PDF
    The North Atlantic Landscape Conservation Cooperative LCC (NA LCC) is a public–private partnership that provides information to support conservation decisions that may be affected by global climate change (GCC) and other threats. The NA LCC region extends from southeast Virginia to the Canadian Maritime Provinces. Within this region, the US National Climate Assessment documented increases in air temperature, total precipitation, frequency of heavy precipitation events, and rising sea level, and predicted more drastic changes. Here, we synthesize literature on the effects of GCC interacting with selected contaminant, nutrient, and environmental processes to adversely affect natural resources within this region. Using a case study approach, we focused on 3 stressors with sufficient NA LCC regionspecific information for an informed discussion. We describe GCC interactions with a contaminant (Hg) and 2 complex environmental phenomena—freshwater acidification and eutrophication. We also prepared taxa case studies on GCCand GCC-contaminant/nutrient/process effects on amphibians and freshwater mussels. Several avian species of high conservation concern have blood Hg concentrations that have been associated with reduced nesting success. Freshwater acidification has adversely affected terrestrial and aquatic ecosystems in the Adirondacks and other areas of the region that are slowly recovering due to decreased emissions of N and sulfur oxides. Eutrophication in many estuaries within the region is projected to increase from greater storm runoff and less denitrification in riparian wetlands. Estuarine hypoxia may be exacerbated by increased stratification. Elevated water temperature favors algal species that produce harmful algal blooms (HABs). In several of the region\u27s estuaries, HABs have been associated with bird die-offs. In the NA LCC region, amphibian populations appear to be declining. Some species may be adversely affected by GCC through higher temperatures and more frequent droughts. GCC may affect freshwater mussel populations via altered stream temperatures and increased sediment loading during heavy storms. Freshwater mussels are sensitive to un-ionized ammonia that more toxic at higher temperatures. We recommend studying the interactive effects of GCC on generation and bioavailability of methylmercury and how GCC-driven shifts in bird species distributions will affect avian exposure to methylmercury. Research is needed on how decreases in acid deposition concurrent with GCC will alter the structure and function of sensitive watersheds and surface waters. Studies are needed to determine how GCC will affect HABs and avian disease, and how more severe and extensive hypoxia will affect fish and shellfish populations. Regarding amphibians, we suggest research on 1) thermal tolerance and moisture requirements of species of concern, 2) effects of multiple stressors (temperature, desiccation, contaminants, nutrients), and 3) approaches to mitigate impacts of increased temperature and seasonal drought. We recommend studies to assess which mussel species and populations are vulnerable and which are resilient to rising stream temperatures, hydrological shifts, and ionic pollutants, all of which are influenced by GCC

    Alterations In the Transciptome and Antibiotic Susceptibility of \u3ci\u3eStaphylococcus aureus\u3c/i\u3e Grown In the Presence of Diclofenac

    Get PDF
    Background Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) which has been shown to increase the susceptibility of various bacteria to antimicrobials and demonstrated to have broad antimicrobial activity. This study describes transcriptome alterations in S. aureus strain COL grown with diclofenac and characterizes the effects of this NSAID on antibiotic susceptibility in laboratory, clinical and diclofenac reduced-susceptibility (DcRS) S. aureus strains. Methods Transcriptional alterations in response to growth with diclofenac were measured using S. aureus gene expression microarrays and quantitative real-time PCR. Antimicrobial susceptibility was determined by agar diffusion MICs and gradient plate analysis. Ciprofloxacin accumulation was measured by fluorescence spectrophotometry. Results Growth of S. aureus strain COL with 80 μg/ml (0.2 × MIC) of diclofenac resulted in the significant alteration by ≥2-fold of 458 genes. These represented genes encoding proteins for transport and binding, protein and DNA synthesis, and the cell envelope. Notable alterations included the strong down-regulation of antimicrobial efflux pumps including mepRAB and a putative emrAB/qacA-family pump. Diclofenac up-regulated sigB (σB), encoding an alternative sigma factor which has been shown to be important for antimicrobial resistance. Staphylococcus aureus microarray metadatabase (SAMMD) analysis further revealed that 46% of genes differentially-expressed with diclofenac are also σB-regulated. Diclofenac altered S. aureus susceptibility to multiple antibiotics in a strain-dependent manner. Susceptibility increased for ciprofloxacin, ofloxacin and norfloxacin, decreased for oxacillin and vancomycin, and did not change for tetracycline or chloramphenicol. Mutation to DcRS did not affect susceptibility to the above antibiotics. Reduced ciprofloxacin MICs with diclofenac in strain BB255, were not associated with increased drug accumulation. Conclusions The results of this study suggest that diclofenac influences antibiotic susceptibility in S. aureus, in part, by altering the expression of regulatory and structural genes associated with cell wall biosynthesis/turnover and transport

    Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    Get PDF
    MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate

    The non-synonymous SNP, R1150W, in SCN9A is not associated with chronic widespread pain susceptibility

    Get PDF
    Acknowledgements The authors wish to thank all of the primary care practices and participants in the EPIFUND study, the EPIFUND study team and Arthritis Research UK lab staff for carrying out the genotyping. The authors thank the men who participated in the seven countries and the research/nursing staff in the seven centres of the EMAS study used in the current analysis: C Pott (Manchester), E Wouters (Leuven), M del Mar Fernandez (Santiago de Compostela), M Jedrzejowska (Lodz), H-M Tabo (Tartu) and A Heredi (Szeged) for their data collection, and C Moseley (Manchester) for data entry and project coordination. DV and SB are senior clinical investigators of the Fund for Scientific Research-Flanders, Belgium (F W O-Vlaanderen). SB is holder of the Leuven University Chair in Gerontology and Geriatrics. The researchers thank the Framingham study participants and personnel. This work was supported by Arthritis Research UK, Chesterfield, UK. The European Male Ageing Study (EMAS) is funded by the Commission of the European Communities Fifth Framework Programme ‘Quality of life and management of living resources’ grant QLK6-CT-2001-00258. Genotyping of the Dyne Steel DNA Bank for Ageing and Cognition cohort was supported by the BBSRC and the study was supported by AgeUK. The Framingham study was supported by grants from the National Heart, Lung, and Blood Institute (NHLBI contract N01-HC-25195) and NIH AR47785 and AG18393.Peer reviewedPublisher PD

    In Vivo T Cell Costimulation Blockade with Abatacept for Acute Graft-versus-Host Disease Prevention: A First-in-Disease Trial

    Get PDF
    AbstractWe performed a first-in-disease trial of in vivo CD28:CD80/86 costimulation blockade with abatacept for acute graft-versus-host disease (aGVHD) prevention during unrelated-donor hematopoietic cell transplantation (HCT). All patients received cyclosporine/methotrexate plus 4 doses of abatacept (10 mg/kg/dose) on days −1, +5, +14, +28 post-HCT. The feasibility of adding abatacept, its pharmacokinetics, pharmacodynamics, and its impact on aGVHD, infection, relapse, and transplantation-related mortality (TRM) were assessed. All patients received the planned abatacept doses, and no infusion reactions were noted. Compared with a cohort of patients not receiving abatacept (the StdRx cohort), patients enrolled in the study (the ABA cohort) demonstrated significant inhibition of early CD4+ T cell proliferation and activation, affecting predominantly the effector memory (Tem) subpopulation, with 7- and 10-fold fewer proliferating and activated CD4+ Tem cells, respectively, at day+28 in the ABA cohort compared with the StdRx cohort (P < .01). The ABA patients demonstrated a low rate of aGVHD, despite robust immune reconstitution, with 2 of 10 patients diagnosed with grade II-IV aGVHD before day +100, no deaths from infection, no day +100 TRM, and with 7 of 10 evaluable patients surviving (median follow-up, 16 months). These results suggest that costimulation blockade with abatacept can significantly affect CD4+ T cell proliferation and activation post-transplantation, and may be an important adjunct to standard immunoprophylaxis for aGVHD in patients undergoing unrelated-donor HCT

    Perioperative blood transfusion is associated with a gene transcription profile characteristic of immunosuppression: a prospective cohort study

    Get PDF
    INTRODUCTION Blood transfusion in the perioperative period has frequently been associated with an excess of nosocomial infections. Whilst transfused whole blood induces specific host immune alteration that may predispose to nosocomial infections, the immunomodulating properties associated with leukodepleted blood remain incompletely understood. In this study, we explore the hypothesis that the transfusion of leukodepleted allogeneic blood during or following major gastrointestinal surgery is associated with an immunosuppressed phenotype, which may in turn predispose to postoperative infectious complications. METHODS Patients aged over 45 years undergoing scheduled inpatient major gastrointestinal surgery were recruited. Gene expression profiles of specific inflammatory genes were assayed from blood collected preoperatively, at 24 and at 48 hours after surgery. Genes were selected based on their ability to represent specific immune pathways. Gene expression was quantified using quantitative real-time polymerase chain reaction (qRT-PCR) to measure messenger RNA (mRNA) levels. Postoperative infections were documented using predefined criteria. RESULTS One hundred and nineteen patients were recruited. Fifteen (13%) patients required blood transfusion within 24 hours of surgery, 44 (37%) patients developed infections and 3 (2%) patients died prior to discharge. Patients receiving a blood transfusion were more likely to develop postoperative infections (P =0.02) and to have lower tumour necrosis factor alpha (TNFα), interleukin (IL)-12, IL-23 and RAR-related orphan receptor gamma T (RORγt) gene expression in the postoperative period (P <0.05). The TNFα/IL-10 mRNA ratio at 24 hours (P =0.0006) and at 48 hours (P =0.01) was lower in patients receiving a blood transfusion over this period. Multivariable analysis confirmed that these observations were independent of the severity of the surgical insult. CONCLUSIONS An association between an immunosuppressive pattern of gene expression and blood transfusion following major elective gastrointestinal surgery is described. This gene expression profile includes a reduction in the activity of innate immunity and T helper cell type 1 (Th1) and T helper cell type 17 (Th17) pathways in those patients receiving a blood transfusion. Blood transfusion was also associated with an excess of infectious complications in this cohort. A mechanistic link is suggested but not proven
    corecore