64 research outputs found
The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI
The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to
deliver data at the Hat Creek Radio Observatory in Northern California.
Scientists and engineers are actively exploiting all of the flexibility
designed into this innovative instrument for simultaneously conducting surveys
of the astrophysical sky and conducting searches for distant technological
civilizations. This paper summarizes the design elements of the ATA, the cost
savings made possible by the use of COTS components, and the cost/performance
trades that eventually enabled this first snapshot radio camera. The
fundamental scientific program of this new telescope is varied and exciting;
some of the first astronomical results will be discussed.Comment: Special Issue of Proceedings of the IEEE: "Advances in Radio
Telescopes", Baars,J. Thompson,R., D'Addario, L., eds, 2009, in pres
The meaning of life in a developing universe
The evolution of life on Earth has produced an organism that is beginning to model and understand its own evolution and the possible future evolution of life in the universe. These models and associated evidence show that evolution on Earth has a trajectory. The scale over which living processes are organized cooperatively has increased progressively, as has its evolvability. Recent theoretical advances raise the possibility that this trajectory is itself part of a wider developmental process. According to these theories, the developmental process has been shaped by a larger evolutionary process that involves the reproduction of universes. This evolutionary process has tuned the key parameters of the universe to increase the likelihood that life will emerge and develop to produce outcomes that are successful in the larger process (e.g. a key outcome may be to produce life and intelligence that intentionally reproduces the universe and tunes the parameters of ‘offspring’ universes). Theory suggests that when life emerges on a planet, it moves along this trajectory of its own accord. However, at a particular point evolution will continue to advance only if organisms emerge that decide to advance the evolutionary process intentionally. The organisms must be prepared to make this commitment even though the ultimate nature and destination of the process is uncertain, and may forever remain unknown. Organisms that complete this transition to intentional evolution will drive the further development of life and intelligence in the universe. Humanity’s increasing understanding of the evolution of life in the universe is rapidly bringing it to the threshold of this major evolutionary transition
Dynamically Driven Evolution of the Interstellar Medium in M51
We report the highest-fidelity observations of the spiral galaxy M51 in CO
emission, revealing the evolution of giant molecular clouds (GMCs) vis-a-vis
the large-scale galactic structure and dynamics. The most massive GMCs
(so-called GMAs) are first assembled and then broken up as the gas flow through
the spiral arms. The GMAs and their H2 molecules are not fully dissociated into
atomic gas as predicted in stellar feedback scenarios, but are fragmented into
smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as
the chains of GMCs that emerge from the spiral arms into interarm regions. The
kinematic shear within the spiral arms is sufficient to unbind the GMAs against
self-gravity. We conclude that the evolution of GMCs is driven by large-scale
galactic dynamics --their coagulation into GMAs is due to spiral arm streaming
motions upon entering the arms, followed by fragmentation due to shear as they
leave the arms on the downstream side. In M51, the majority of the gas remains
molecular from arm entry through the inter-arm region and into the next spiral
arm passage.Comment: 6 pages, including 3 figures. Accepted, ApJ
- …