328 research outputs found

    One and Two Dimensional Pulsed Electron Paramagnetic Resonance Studies of in vivo Vanadyl Coordination in Rat Kidney

    Get PDF
    The biological fate of a chelated vanadium source is investigated by/n vivo spectroscopic methods to elucidate the chemical form in which the metal ion is accumulated. A pulsed electron paramagnetic resonance study of vanadyl ions in kidney tissue, taken from rats previously treated with bis(ethylmaltolato)oxovanadium(IV) (BEOV) in drinking water, is presented. A combined approach using stimulated echo (3-pulse) electron spin echo envelope modulation (ESEEM) and the two dimensional 4-pulse hyperfine sublevel correlation (HYSCORE) spectroscopies has shown that at least some of the VO2+ ions are involved in the coordination with nitrogen-containing ligands. From the experimental spectra, a 4N hyperfine coupling constant of 4.9 MHz and a quadrupole coupling constant of 0.6 + 0.04 MHz were determined, consistent with amine coordination of the vanadyl ions. Study of VO-histidine model complexes allowed for a determination of the percentage of nitrogen-coordinated VO2+ ions in the tissue sample that is found nitrogen-coordinated. By taking into account the bidentate nature of histidine coordination to VO2+ ions, a more accurate determination of this value is reported. The biological fate of chelated versus free (i.e. salts) vanadyl ion sources has been deduced by comparison to earlier reports. In contrast to its superior pharmacological efficacy over VOSO4, BEOV shares a remarkably similar biological fate after uptake into kidney tissue

    The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle

    Full text link
    The temperature anomalies in the Earth's mantle associated with thermal convection1 can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic or compositionally heterogeneous on large scales. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800K at 1000 km, 1500K at 2000 km, and possibly over 2000K at the core-mantle boundary.Comment: Published in: Nature 411, 934-937 (2001

    A Large Population Histology Study Showing the Lack of Association between ALT Elevation and Significant Fibrosis in Chronic Hepatitis B

    Get PDF
    OBJECTIVE: We determined the association between various clinical parameters and significant liver injury in both hepatitis B e antigen (HBeAg)-positive and HBeAg-negative patients. METHODS: From 1994 to 2008, liver biopsy was performed on 319 treatment-naive CHB patients. Histologic assessment was based on the Knodell histologic activity index for necroinflammation and the Ishak fibrosis staging for fibrosis. RESULTS: 211 HBeAg-positive and 108 HBeAg-negative patients were recruited, with a median age of 31 and 46 years respectively. 9 out of 40 (22.5%) HBeAg-positive patients with normal ALT had significant histologic abnormalities (necroinflammation grading >/= 7 or fibrosis score >/= 3). There was a significant difference in fibrosis scores among HBeAg-positive patients with an ALT level within the Prati criteria (30 U/L for men, 19 U/L for women) and patients with a normal ALT but exceeding the Prati criteria (p = 0.024). Age, aspartate aminotransferase and platelet count were independent predictors of significant fibrosis in HBeAg-positive patients with an elevated ALT by multivariate analysis (p = 0.007, 0.047 and 0.045 respectively). HBV DNA and platelet count were predictors of significant fibrosis in HBeAg-negative disease (p = 0.020 and 0.015 respectively). An elevated ALT was not predictive of significant fibrosis for HBeAg-positive (p = 0.345) and -negative (p = 0.544) disease. There was no significant difference in fibrosis staging among ALT 1-2 x upper limit of normal (ULN) and > x 2 ULN for both HBeAg-positive (p = 0.098) and -negative (p = 0.838) disease. CONCLUSION: An elevated ALT does not accurately predict significant liver injury. Decisions on commencing antiviral therapy should not be heavily based on a particular ALT threshold.published_or_final_versio

    A comparison of hepatitis B viral markers of patients in different clinical stages of chronic infection

    Get PDF
    Hepatitis B viral markers may be useful for predicting outcomes such as liver-related deaths or development of hepatocellular carcinoma. We determined the frequency of these markers in different clinical stages of chronic hepatitis B infection. We compared baseline hepatitis B viral markers in 317 patients who were enrolled in a prospective study and identified the frequency of these tests in immune-tolerant (IT) patients, in inactive carriers , and in patients with either hepatitis B e antigen ( HBeAg)- positive or HBeAg-negative chronic hepatitis or cirrhosis. IT patients were youngest (median age 27 years) and HBeAg- negative patients with cirrhosis were oldest (median age 58 years) (p = 0.03 to < 0.0001). The male to female ratio was similar both in IT patients and in inactive carriers, but there was a male preponderance both in patients with chronic hepatitis and in patients with cirrhosis (p < 0.0001). The A1896 precore mutants were most prevalent in inactive carriers (36.4%) and HBeAg- negative patients with chronic hepatitis (38.8%; p < 0.0001), and the T 1762/A1764 basal core promoter mutants were most often detected in HBeAg- negative patients with cirrhosis (65.1%; p = 0.02). Genotype A was detected only in 5.3% of IT patients, and genotype B was least often detected in both HBeAg-Positive patients with chronic hepatitis and cirrhosis (p = 0.03). The hepatitis B viral DNA levels were lowest in inactive carriers (2.69 log(10) IU/mL) and highest in IT patients (6. 80 log(10) IU/mL; p = 0.02 to < 0.0001). At follow-up, HBeAg-positive and HBeAg-negative patients with cirrhosis accounted for 57 of 64 (89.1%) liver-related deaths (p < 0. 0001). Differences in baseline hepatitis B viral markers were detected in patients in various clinical stages of hepatitis B virus infection. HBeAg-positive and HBeAg- negative patients with cirrhosis accounted for the majority of the liver-related fatalities

    Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    Full text link
    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations

    Chronic Hepatitis B Finite Treatment: similar and different concerns with new drug classes

    Get PDF
    Chronic hepatitis B, a major cause of liver disease and cancer, affects over 250 million people worldwide. Currently there is no cure, only suppressive therapies. Efforts to develop finite curative HBV therapies are underway, consisting of combinations of multiple novel agents +/- nucleos(t)ide reverse transcriptase inhibitors. The HBV Forum convened a webinar in July 2021, and subsequent working group discussions to address how and when to stop finite therapy for demonstration of sustained off-treatment efficacy and safety responses. Participants included leading experts in academia, clinical practice, pharmaceutical companies, patient representatives and regulatory agencies. This Viewpoint outlines areas of consensus within our multi-stakeholder group for stopping finite therapies in chronic Hepatitis B investigational studies, including trial design, patient selection, outcomes, biomarkers, pre-defined stopping criteria, pre-defined retreatment criteria, duration of investigational therapies, and follow up after stopping therapy. Future research of unmet needs are discussed

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    TOP2B Is Required to Maintain the Adrenergic Neural Phenotype and for ATRA-Induced Differentiation of SH-SY5Y Neuroblastoma Cells.

    Get PDF
    The neuroblastoma cell line SH-SY5Y is widely used to study retinoic acid (RA)-induced gene expression and differentiation and as a tool to study neurodegenerative disorders. SH-SY5Y cells predominantly exhibit adrenergic neuronal properties, but they can also exist in an epigenetically interconvertible alternative state with more mesenchymal characteristics; as a result, these cells can be used to study gene regulation circuitry controlling neuroblastoma phenotype. Using a combination of pharmacological inhibition and targeted gene inactivation, we have probed the requirement for DNA topoisomerase IIB (TOP2B) in RA-induced gene expression and differentiation and in the balance between adrenergic neuronal versus mesenchymal transcription programmes. We found that expression of many, but not all genes that are rapidly induced by ATRA in SH-SY5Y cells was significantly reduced in the TOP2B null cells; these genes include BCL2, CYP26A1, CRABP2, and NTRK2. Comparing gene expression profiles in wild-type versus TOP2B null cells, we found that long genes and genes expressed at a high level in WT SH-SY5Y cells were disproportionately dependent on TOP2B. Notably, TOP2B null SH-SY5Y cells upregulated mesenchymal markers vimentin (VIM) and fibronectin (FN1) and components of the NOTCH signalling pathway. Enrichment analysis and comparison with the transcription profiles of other neuroblastoma-derived cell lines supported the conclusion that TOP2B is required to fully maintain the adrenergic neural-like transcriptional signature of SH-SY5Y cells and to suppress the alternative mesenchymal epithelial-like epigenetic state
    corecore