106 research outputs found

    How do Managers Control Technology-Intensive Work?

    Get PDF
    Abstract Technology is all around us. In this day and age consumers are constantly anticipating and expecting companies to develop and produce technology that is bigger, better, and faster than the technology released the day before. Companies that choose to operate in this environment understand that their work is of a temporary nature. An idea is born, developed, produced, and as it hits the shelf the same company that produced this technology is already back at the drawing board starting on the next big thing. Effectively controlling technology intensive work is imperative and best achieved through the tenants of project management. Projects are best controlled first by good planning, then through measuring performance, and finally by taking corrective action when necessary. This purpose of this paper is to provide an overview of the tools and techniques of project management that can also be used to effectively control technology intensive work

    First Time Detection Of Brome Mosaic Virus Associated With Other Wheat Viruses In Kansas Wheat Using Nanopore Sequencing

    Get PDF
    Kansas wheat production has been threatened by Wheat streak mosaic complex of three viruses including Wheat streak mosaic virus (WSMV). Triticum mosaic virus (TriMV), and High Plains wheat mosaic emaravirus (HPWMOV). In 2017. Kansas wheat producers lost 19.2 million bushels of wheat worth $76.8 million due to wheat streak mosaic. Infection of a single plant with multiple viruses is common in wheat fields. Other common wheat viruses have been recorded from Kansas but not the Brome mosaic virus (BMV) Diagnosis of virus like symptoms in plants has been mostly dominated by targeted-specific methods with known antibodies, primers, and probes. These targeted methods identify only already known viruses and virus combinations Next generation sequencing techniques such a Nanopore sequencing technology has great potential for identifying novel and multiple potential plant pathogens in a single analysis. Reliable diagnostic methods are needed to identify the risks in plant health to develop appropriate plant protection strategies

    Expression of apoplast-targeted plant defensin \u3ci\u3eMtDef4.2\u3c/i\u3e confers resistance to leaf rust pathogen \u3ci\u3ePuccinia triticina\u3c/i\u3e but does not affect mycorrhizal symbiosis in transgenic wheat

    Get PDF
    Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbioti

    A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Hessian fly (<it>Mayetiola destructor</it>) is an important insect pest of wheat. It has tractable genetics, polytene chromosomes, and a small genome (158 Mb). Investigation of the Hessian fly presents excellent opportunities to study plant-insect interactions and the molecular mechanisms underlying genome imprinting and chromosome elimination. A physical map is needed to improve the ability to perform both positional cloning and comparative genomic analyses with the fully sequenced genomes of other dipteran species.</p> <p>Results</p> <p>An FPC-based genome wide physical map of the Hessian fly was constructed and anchored to the insect's polytene chromosomes. Bacterial artificial chromosome (BAC) clones corresponding to 12-fold coverage of the Hessian fly genome were fingerprinted, using high information content fingerprinting (HIFC) methodology, and end-sequenced. Fluorescence <it>in situ </it>hybridization (FISH) co-localized two BAC clones from each of the 196 longest contigs on the polytene chromosomes. An additional 70 contigs were positioned using a single FISH probe. The 266 FISH mapped contigs were evenly distributed and covered 60% of the genome (95,668 kb). The ends of the fingerprinted BACs were then sequenced to develop the capacity to create sequenced tagged site (STS) markers on the BACs in the map. Only 3.64% of the BAC-end sequence was composed of transposable elements, helicases, ribosomal repeats, simple sequence repeats, and sequences of low complexity. A relatively large fraction (14.27%) of the BES was comprised of multi-copy gene sequences. Nearly 1% of the end sequence was composed of simple sequence repeats (SSRs).</p> <p>Conclusion</p> <p>This physical map provides the foundation for high-resolution genetic mapping, map-based cloning, and assembly of complete genome sequencing data. The results indicate that restriction fragment length heterogeneity in BAC libraries used to construct physical maps lower the length and the depth of the contigs, but is not an absolute barrier to the successful application of the technology. This map will serve as a genomic resource for accelerating gene discovery, genome sequencing, and the assembly of BAC sequences. The Hessian fly BAC-clone assembly, and the names and positions of the BAC clones used in the FISH experiments are publically available at <url>http://genome.purdue.edu/WebAGCoL/Hfly/WebFPC/</url>.</p

    Highly multiplexed, label-free proteoform imaging of tissues by individual ion mass spectrometry.

    Get PDF
    Imaging of proteoforms in human tissues is hindered by low molecular specificity and limited proteome coverage. Here, we introduce proteoform imaging mass spectrometry (PiMS), which increases the size limit for proteoform detection and identification by fourfold compared to reported methods and reveals tissue localization of proteoforms at &lt;80-ÎŒm spatial resolution. PiMS advances proteoform imaging by combining ambient nanospray desorption electrospray ionization with ion detection using individual ion mass spectrometry. We demonstrate highly multiplexed proteoform imaging of human kidney, annotating 169 of 400 proteoforms of &lt;70 kDa using top-down MS and a database lookup of ~1000 kidney candidate proteoforms, including dozens of key enzymes in primary metabolism. PiMS images reveal distinct spatial localizations of proteoforms to both anatomical structures and cellular neighborhoods in the vasculature, medulla, and cortex regions of the human kidney. The benefits of PiMS are poised to increase proteome coverage for label-free protein imaging of tissues

    Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression

    Get PDF
    Translational control of transcription factor ATF4 through paired upstream ORFs (uORFs) plays an important role in eukaryotic gene regulation. While it is typically induced by phosphorylation of eIF2α, ATF4 translation can be also induced by expression of a translational inhibitor protein, eIF5-mimic protein 1 (5MP1, also known as BZW2) in mammals. Here we show that the 5MP gene is maintained in eukaryotes under strong purifying selection, but is uniquely missing in two major phyla, nematoda and ascomycota. The common function of 5MP from protozoa, plants, fungi and insects is to control translation by inhibiting eIF2. The affinity of human 5MP1 to eIF2ÎČ was measured as being equivalent to the published value of human eIF5 to eIF2ÎČ, in agreement with effective competition of 5MP with eIF5 for the main substrate, eIF2. In the red flour beetle, Tribolium castaneum, RNA interference studies indicate that 5MP facilitates expression of GADD34, a downstream target of ATF4. Furthermore, both 5MP and ATF4 are essential for larval development. Finally, 5MP and the paired uORFs allowing ATF4 control are conserved in the entire metazoa except nematoda. Based on these findings, we discuss the phylogenetic and functional linkage between ATF4 regulation and 5MP expression in this group of eukaryotes

    Resistance to wheat rusts identified in wheat/Amblyopyrum muticum chromosome introgressions

    Get PDF
    © 2020 The Authors. Crop Science © 2020 Crop Science Society of America Wheat (Triticum aestivum L.) rusts are a worldwide production problem. Plant breeders have used genetic resistance to combat these fungi. However, single-gene resistance is rapidly overcome as a result of frequent occurrence of new virulent fungal strains. Thus, a supply of new resistance sources is continually needed, and new resistance sources are limited within hexaploid wheat genetic stocks. Wild relatives are able to be a resource for new resistance genes but are hindered because of chromosome incapability with domesticated wheats. Twenty-eight double-haploid hexaploid wheat/Amblyopyrum muticum (Boiss.) Eig introgression lines, with introgressions covering the majority of the T genome, were evaluated for resistance to Puccinia triticina Erikss., P. graminis Pers.:Pers. f.sp. tritici Erikss. & E. Henning, and P. striiformis Westend. f.sp. tritici Erikss. At the seedling level, four lines were resistant to races of P. triticina, six lines were resistant to P. graminis, and 15 lines were resistant to P. striiformis. At the adult stage, 16 lines were resistant to P. triticina. Line 355 had resistance to all three rusts and line 161 had resistance to all tested races of P. triticina. Some of these lines will require further work to reduce the size of the introgressed segment; however, lines 92 and 355 have very small fragments and can be used directly as new resistance donors

    Chromosome-specific KASP markers for detecting Amblyopyrum muticum segments in wheat introgression lines

    Get PDF
    Many wild-relative species are being used in prebreeding programs to increase the genetic diversity of wheat (Triticum aestivum L.). Genotyping tools such as single nucleotide polymorphism (SNP)-based arrays and molecular markers have been widely used to characterize wheat–wild relative introgression lines. However, due to the polyploid nature of the recipient wheat genome, it is difficult to develop SNP-based Kompetitive allele-specific polymerase chain reaction (KASP) markers that are codominant to track the introgressions from the wild species. Previous attempts to develop KASP markers have involved both exome- and polymerase chain reaction (PCR)-amplicon-based sequencing of the wild species. But chromosome-specific KASP assays have been hindered by homoeologous SNPs within the wheat genome. This study involved whole genome sequencing of the diploid wheat wild relative Amblyopyrum muticum (Boiss.) Eig and development of a de novo SNP discovery pipeline that generated ∌38,000 SNPs in unique wheat genome sequences. New assays were designed to increase the density of Am. muticum polymorphic KASP markers. With a goal of one marker per 60 Mbp, 335 new KASP assays were validated as diagnostic for Am. muticum in a wheat background. Together with assays validated in previous studies, 498 well distributed chromosome-specific markers were used to recharacterize previously genotyped wheat–Am. muticum doubled haploid (DH) introgression lines. The chromosome-specific nature of the KASP markers allowed clarification of which wheat chromosomes were involved with recombination events or substituted with Am. muticum chromosomes and the higher density of markers allowed detection of new small introgressions in these DH lines
    • 

    corecore