12 research outputs found

    Optimizing QTL introgression via stochastic simulations: an example of the IRRI rice breeding program

    Get PDF
    A key limitation in the ability of breeding programs to leverage benefits of major-gene marker-assisted selection is the availability of those genes in appropriate elite germplasm. In this context, our study compared three strategies to develop new recipients for QTL introgression (Background recovery (BG), Selective sweep (SS), and Breeding values (BV)) in a short-term breeding program (over five breeding cycles). Furthermore, we evaluated two different numbers of recipients (10 and 20) in the introgression process and how they influence the population performance and the QTL fixation over cycles. Finally, we used rice as a model of a self- pollinated crop and implemented stochastic simulations. Each strategy was simulated and replicated 40 times. Regardless of the selection strategy used, the QTL introgression resulted in substantial penalties in yield performance. However, introducing fewer new parents to the augmentation process minimized this effect. Conversely, the time required to achieve fixation of target QTLs showed substantial differences, with selection for BV during augmentation out-performing other methods. Overall, the BV_10 strategy (10 parents selected based on genomic estimated breeding values) displayed the best trade-off between reduced penalty from introducing new QTLs with a reasonable speed at which those QTLs can achieve fixation over subsequent breeding cycles

    Optimizing quantitative trait loci introgression in elite rice germplasms: Comparing methods and population sizes to develop new recipients via stochastic simulations

    Get PDF
    This study compared three strategies to develop new recipients for quantitative trait loci (QTL) introgression (background recovery [BG], selective sweep [SS] and breeding value [BV]) in a short-term rice breeding programme (over five breeding cycles). Furthermore, we evaluated two different numbers of recipients (10 and 20) in the introgression process and how they influence the population performance and the QTL fixation over cycles. Finally, we used the International Rice Research Institute (IRRI) rice breeding framework as the model to perform the stochastic simulations. Each strategy was simulated and replicated 100 times. Regardless of the selection strategy used, the QTL introgression resulted in substantial penalties in yield performance. However, introducing fewer new parents to the augmentation process minimized this effect. Conversely, the time required to achieve fixation of target QTLs showed substantial differences, with selection for BV during augmentation outperforming other methods. Overall, the BV_10 strategy (10 parents selected based on genomic estimated BV) displayed the best trade-off between reduced penalty from introducing new QTLs with a reasonable speed at which those QTLs can achieve fixation over subsequent breeding cycles

    Optimizing self-pollinated crop breeding employing genomic selection: From schemes to updating training sets

    Get PDF
    Long-term breeding schemes using genomic selection (GS) can boost the response to selection per year. Although several studies have shown that GS delivers a higher response to selection, only a few analyze which stage GS produces better results and how to update the training population to maintain prediction accuracy. We used stochastic simulation to compare five GS breeding schemes in a self-pollinated long-term breeding program. Also, we evaluated four strategies, using distinct methods and sizes, to update the training set. Finally, regarding breeding schemes, we proposed a new approach using GS to select the best individuals in each F2 progeny, based on genomic estimated breeding values and genetic divergence, to cross them and generate a new recombination event. Our results showed that the best scenario was using GS in F2, followed by the phenotypic selection of new parents in F4. For TS updating, adding new data every cycle (over 768) to update the TS maintains the prediction accuracy at satisfactory levels for more breeding cycles. However, only the last three generations can be kept in the TS, optimizing the genetic relationship between TS and the targeted population and reducing the computing demand and risks. Hence, we believe that our results may help breeders optimize GS in their programs and improve genetic gain in long-term schemes

    Development of early maturing salt-tolerant rice variety KKL(R) 3 using a combination of conventional and molecular breeding approaches

    Get PDF
    Introduction: Soil salinity poses a severe threat to rice production, resulting in stunted growth, leaf damage, and substantial yield losses. This study focuses on developing an early maturing seedling stage salinity tolerant rice variety by integrating conventional breeding methods with marker assisted breeding (MAB) approaches.Methods: Seedling-stage salinity tolerance Quantitative Trait Locus (QTL) “Saltol” from the salt-tolerant parent FL478 was introduced into the high-yielding but salt-sensitive rice variety ADT 45. This was achieved through a combination of conventional breeding and MAB. The breeding process involved rigorous selection, screening, and physiological parameter assessments.Results: KKL(R) 3 (KR 15066) identified as the top performing Recombinant Inbred Line (RIL), consistently demonstrating maximum mean grain yields under both salinity (3435.6 kg/ha) and normal (6421.8 kg/ha) conditions. In comparison to the early maturing, salt-tolerant national check variety CSR 10, KKL(R) 3 exhibited a substantial yield increase over 50%.Discussion: The notable improvement observed in KKL(R) 3 positions it as a promising variety for release, offering a reliable solution to maximize yields, ensure food security, and promote agricultural sustainability in both saline and non-saline environments. The study highlights the effectiveness of MAB in developing salt-tolerant rice varieties and emphasizes the significance of the Saltol QTL in enhancing seedling stage salinity tolerance. The potential release of KKL(R) 3 has the capacity to revolutionize rice production in salt affected regions, providing farmers with a reliable solution to maximize yields and contribute to food security while ensuring agricultural sustainability

    Climate change challenges, plant science solutions

    Get PDF
    Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community

    Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection.

    No full text
    Despite strong interest over many years, the usage of quantitative trait loci in plant breeding has often failed to live up to expectations. A key weak point in the utilisation of QTLs is the "quality" of markers used during marker-assisted selection (MAS): unreliable markers result in variable outcomes, leading to a perception that MAS products fail to achieve reliable improvement. Most reports of markers used for MAS focus on markers derived from the mapping population. There are very few studies that examine the reliability of these markers in other genetic backgrounds, and critically, no metrics exist to describe and quantify this reliability. To improve the MAS process, this work proposes five core metrics that fully describe the reliability of a marker. These metrics give a comprehensive and quantitative measure of the ability of a marker to correctly classify germplasm as QTL[+]/[-], particularly against a background of high allelic diversity. Markers that score well on these metrics will have far higher reliability in breeding, and deficiencies in specific metrics give information on circumstances under which a marker may not be reliable. The metrics are applicable across different marker types and platforms, allowing an objective comparison of the performance of different markers irrespective of the platform. Evaluating markers using these metrics demonstrates that trait-specific markers consistently out-perform markers designed for other purposes. These metrics also provide a superb set of criteria for designing superior marker systems for a target QTL, enabling the selection of an optimal marker set before committing to design

    DataSheet_1_Optimizing self-pollinated crop breeding employing genomic selection: From schemes to updating training sets.pdf

    No full text
    Long-term breeding schemes using genomic selection (GS) can boost the response to selection per year. Although several studies have shown that GS delivers a higher response to selection, only a few analyze which stage GS produces better results and how to update the training population to maintain prediction accuracy. We used stochastic simulation to compare five GS breeding schemes in a self-pollinated long-term breeding program. Also, we evaluated four strategies, using distinct methods and sizes, to update the training set. Finally, regarding breeding schemes, we proposed a new approach using GS to select the best individuals in each F2 progeny, based on genomic estimated breeding values and genetic divergence, to cross them and generate a new recombination event. Our results showed that the best scenario was using GS in F2, followed by the phenotypic selection of new parents in F4. For TS updating, adding new data every cycle (over 768) to update the TS maintains the prediction accuracy at satisfactory levels for more breeding cycles. However, only the last three generations can be kept in the TS, optimizing the genetic relationship between TS and the targeted population and reducing the computing demand and risks. Hence, we believe that our results may help breeders optimize GS in their programs and improve genetic gain in long-term schemes.</p
    corecore