113 research outputs found

    Gamma Knife Radiosurgery for Arteriovenous Malformations Using a Four- Dimensional Dynamic Volume Computed Tomography Angiography Planning System as an Alternative to Traditional Catheter Angiogram

    Get PDF
    Background Gamma knife radiosurgery (GKRS) remains a critical intervention in the long-term management of arteriovenous malformations (AVMs). For planning a treatment, identification of the nidus is essential, and it is dependent on high-resolution blood flow imaging, usually in the form of a traditional angiogram. The development of dynamic 320-slice computed tomography (CT) angiography has offered a noninvasive alternative to intra-arterial fluoroscopic imaging, and it is capable of providing equivalent temporal resolution. In this study, we describe the feasibility of using four-dimensional CT angiography (4D-CTA) in GKRS planning for AVM treatment and a comparative analysis with a traditional angiogram. Methods A retrospective review was performed on AVM patients treated via GKRS with a 4D-CTA prior to the day of treatment, on the day of treatment, or with a day-of-treatment angiogram. Treatment times, along with total times in the Leksell® coordinate frame G, were obtained from the medical records. The frame-on time was calculated by subtracting the treatment time from the total time starting from application to removal, and the statistical analysis was performed across groups using analysis of variance (ANOVA). All treatments were performed on the Perfexion™ model with a dynamic flow imaging procured via a 320-slice CT scanner or traditional angiography platform. Results Some 27 patients underwent a total of 29 GKRS procedures for AVM treatment at our institution between September 2011 and January 2017. Mean age at the time of treatment was 35.5 (6-65) years, and male:female ratio was 5:4. Some 12 patients had 4D-CTA performed prior to the day of treatment, eight patients had the same CTA completed after frame placement on the day of treatment, while seven patients underwent traditional angiography. The mean frame-on times of each group were 190, 336, and 426 minutes, respectively (p \u3c 0.0001). No procedures were aborted based on the image quality. Conclusions 4D-CTA is an effective tool in identifying the AVM nidus for GKRS planning. These studies can be performed prior to the day of treatment, allowing for a significant reduction in frame-on time and eliminating the risk of angiogram complication on the day of GKRS

    Efficacy of Stereotactic Radiosurgery in Patients with Multiple Metastases: Importance of Volume Rather Than Number of Lesions

    Get PDF
    The role of stereotactic radiosurgery (SRS) in the treatment of multiple brain metastases is controversial. While whole brain radiation therapy (WBRT) has historically been the mainstay of treatment, its value is increasingly being questioned as emerging data supports that SRS alone can provide comparable therapeutic outcomes for limited (one to three) intracranial metastases with fewer adverse effects, including neurocognitive decline. Multiple recent studies have also demonstrated that patients with multiple (\u3e 3) intracranial metastases with a low overall tumor volume have a favorable therapeutic response to SRS, with no significant difference compared to patients with limited metastases. Herein, we present a patient with previously controlled breast cancer who presented with multiple recurrences of intracranial metastases but low total intracranial tumor volume each time. This patient underwent SRS alone for a total of 40 metastatic lesions over three separate procedures with good local control and without any significant cognitive toxicity. The patient eventually opted for enrollment in the NRG-CC001 clinical trial after multiple cranial recurrences. She received conventional WBRT with six months of memantine and developed significant neurocognitive side effects. This case highlights the growing body of literature supporting the role of SRS alone in the management of multiple brain metastases and the importance of maximizing neurocognition as advances in systemic therapies prolong survival in Stage IV cancer

    Electrochemical Investigation of Azurin Thermodynamic and Adsorption Properties at Monolayer-Protected Cluster Film Assemblies – Evidence for a More Homogeneous Adsorption Interface

    Get PDF
    Thermodynamic and adsorption properties of protein monolayer electrochemistry (PME) are examined for Pseudomonas aeruginosa azurin (AZ) immobilized at an electrode modified with a networked film of monolayer-protected clusters (MPCs) to assess if nanoparticle films of this nature offer a more homogeneous adsorption interface compared to traditional self-assembled monolayer (SAM) modified electrodes. Specifically, electrochemistry is used to assess properties of surface coverage, formal potential, peak broadening, and electron transfer (ET) kinetics as a function of film thickness. The modification of a surface with dithiol-linked films of MPCs (Au225C675) provides a more uniform binding interface for AZ that results in voltammetry with less peak broadening (mV) compared to SAMs (\u3e120–130 mV). Improved homogeneity of the MPC interface for protein adsorption is confirmed by atomic force microscopy imaging that shows uniform coverage of the gold substrate topography and by electrochemical analysis of film properties during systematic desorption of AZ, which indicates a more homogeneous population of adsorbed protein at MPC films. These results suggest MPC film assemblies may be used in PME to provide greater molecular level control of the protein adsorption interface, a development with applications for strategies to study biological ET processes as well as the advancement of biosensor technologies

    Safe Diagram - A Design And Reliability Tool For Turbine Blading.

    Get PDF
    LecturePg. 93-102The complex field of turbine blade vibration has long been in need of improved tools to help predict the reliability of blading. The SAFE interference diagram is presented as such a tool. It presents much more information than the widely used Campbell diagram. In evaluating interferences, the SAFE diagram compares not only the frequencies of exciting harmonics with natural frequencies of blades, but also the shape of these harmonics with the normal mode shapes of a completely bladed disc including packeted blading. Examples are given of cases where the Campbell diagram predicts a dangerous resonance while the SAFE diagram shows that no resonances exist which are supported by experience. Examples are also provided to show when the SAFE diagram can pinpoint what interference is likely to cause the largest blade vibration. Finally, it is shown how a simple change in packeting can be used to change the blade interference and to avoid dangerous operation

    Distance Dependence of Electron Transfer Kinetics for Azurin Protein Adsorbed to Monolayer Protected Nanoparticle Film Assemblies

    Get PDF
    The distance dependence and kinetics of the heterogeneous electron transfer (ET) reaction for the redox protein azurin adsorbed to an electrode modified with a gold nanoparticle film are investigated using cyclic voltammetry. The nanoparticle films are comprised of nonaqueous nanoparticles, known as monolayer-protected clusters (MPCs), which are covalently networked with dithiol linkers. The MPC film assembly serves as an alternative adsorption platform to the traditional alkanethiolate self-assembled monolayer (SAM) modified electrodes that are commonly employed to study the ET kinetics of immobilized redox proteins, a strategy known as protein monolayer electrochemistry. Voltammetric analysis of the ET kinetics for azurin adsorbed to SAMs of increasing chain length results in quasi-reversible voltammetry with significant peak splitting. We observed rate constants (k°ET) of 12−20 s−1 for the protein at SAMs of shorter alkanethiolates that decays exponentially (β = 0.9/CH2 or 0.8/Å) at SAMs of longer alkanethiolates (9−11 methylene units) or an estimated distance of 1.23 nm and is representative of classical electronic tunneling behavior over increasing distance. Azurin adsorbed to the MPC film platforms of increasing thickness results in reversible voltammetry with very little voltammetric peaks splitting and nearly negligible decay of the ET rate over significant distances up to 20 nm. The apparent lack of distance dependence for heterogeneous ET reactions at MPC film assemblies is attributed to a two-step mechanism involving extremely fast electronic hopping through the MPC film architecture. These results suggest that MPC platforms may be used in protein monolayer electrochemistry to create adsorption platforms of higher architecture that can accommodate greater than monolayer protein coverage and increase the Faradaic signal, a finding with significant implications for amperometric biosensor design and development

    Opposing Roles for Membrane Bound and Soluble Fas Ligand in Glaucoma-Associated Retinal Ganglion Cell Death

    Get PDF
    Glaucoma, the most frequent optic neuropathy, is a leading cause of blindness worldwide. Death of retinal ganglion cells (RGCs) occurs in all forms of glaucoma and accounts for the loss of vision, however the molecular mechanisms that cause RGC loss remain unclear. The pro-apoptotic molecule, Fas ligand, is a transmembrane protein that can be cleaved from the cell surface by metalloproteinases to release a soluble protein with antagonistic activity. Previous studies documented that constitutive ocular expression of FasL maintained immune privilege and prevented neoangeogenesis. We now show that FasL also plays a major role in retinal neurotoxicity. Importantly, in both TNFα triggered RGC death and a spontaneous model of glaucoma, gene-targeted mice that express only full-length FasL exhibit accelerated RGC death. By contrast, FasL-deficiency, or administration of soluble FasL, protected RGCs from cell death. These data identify membrane-bound FasL as a critical effector molecule and potential therapeutic target in glaucoma
    • …
    corecore