8,562 research outputs found

    The importance of a new product development (NPD) process: getting started.

    Get PDF
    In order to achieve a successful new product, and certainly the successful implementation of a new product into a company, it is necessary to have a structured and documented approach to New Product Development (NPD), therefore providing a clear roadmap for the development of new products. This review highlights the NPD process, from concept to consumer, and what the key success drivers are, such as; the quest for real product superiority and success, and the need for cross-functional teams; in order for a company to succeed and use new products as a source for competitive advantage

    An Evaluation of Marital and Familial Advice In a Popular Journal

    Get PDF

    Panel 1: Merger Enforcement Around the Globe

    Get PDF

    Subcellular localisation modulates ubiquitylation and degradation of Ascl1.

    Get PDF
    The proneural transcription factor Ascl1 is a master regulator of neurogenesis, coordinating proliferation and differentiation in the central nervous system. While its expression is well characterised, post-translational regulation is much less well understood. Here we demonstrate that a population of chromatin-bound Ascl1 can be found associated with short chains of ubiquitin while cytoplasmic Ascl1 harbours much longer ubiquitin chains. Only cytoplasmic ubiquitylation targets Ascl1 for destruction, which occurs by conjugation of ubiquitin to lysines in the basic helix-loop-helix domain of Ascl1 and requires the E3 ligase Huwe1. In contrast, chromatin-bound Ascl1 associated with short ubiquitin-chains, which can occur on lysines within the N-terminal region or the bHLH domain and is not mediated by Huwe1, is not targeted for ubiquitin-mediated destruction. We therefore offer further insights into post-translational regulation of Ascl1, highlighting complex regulation of ubiquitylation and degradation in the cytoplasm and on chromatin.This work was funded by MRC Research Grants (MR/K018329/1 and MR/L021129/1) and received core support from Wellcome Trust and MRC Cambridge Stem Cell Institute

    Cooling of cryogenic electron bilayers via the Coulomb interaction

    Full text link
    Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource for carrier cooling via coupling to a nearby, cold electron reservoir. Specifically, we consider the geometry of an electron bilayer in a silicon-based heterostructure, and analyze the power transfer. We show that across a range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform coherent manipulations of single spins.Comment: 9 pages, 5 figure

    The origin of switching noise in GaAs/AlGaAs lateral gated devices

    Full text link
    We have studied the origin of switching (telegraph) noise at low temperature in lateral quantum structures defined electrostatically in GaAs/AlGaAs heterostructures by surface gates. The noise was measured by monitoring the conductance fluctuations around e2/he^2/h on the first step of a quantum point contact at around 1.2 K. Cooling with a positive bias on the gates dramatically reduces this noise, while an asymmetric bias exacerbates it. We propose a model in which the noise originates from a leakage current of electrons that tunnel through the Schottky barrier under the gate into the doped layer. The key to reducing noise is to keep this barrier opaque under experimental conditions. Bias cooling reduces the density of ionized donors, which builds in an effective negative gate voltage. A smaller negative bias is therefore needed to reach the desired operating point. This suppresses tunnelling from the gate and hence the noise. The reduction in the density of ionized donors also strengthens the barrier to tunneling at a given applied voltage. Support for the model comes from our direct observation of the leakage current into a closed quantum dot, around 10−20A10^{-20} \mathrm{A} for this device. The current was detected by a neighboring quantum point contact, which showed monotonic steps in time associated with the tunneling of single electrons into the dot. If asymmetric gate voltages are applied, our model suggests that the noise will increase as a consequence of the more negative gate voltage applied to one of the gates to maintain the same device conductance. We observe exactly this behaviour in our experiments.Comment: 8 pages, 7 figure

    Municipal Ethical Standards: The Need for a New Approach Report

    Get PDF
    The New York State Commission on Government Integrity investigated numerous situations throughout the state that revealed just how bad the current law is. Our findings and a pro- posed municipal ethics act that we drafted to correct the law\u27s deficiencies are contained in the following report, Municipal Ethical Standards: The Need for a New Approach. Our pro- posed Act would set out the minimum ethical standards that should be observed in every municipality throughout the state. The premise here is that there are certain basic features to good government that make sense for all governments, no matter what their size or location - rural or suburban, upstate or downstate. If the proposed Act became law, localities would be able to enact more stringent regulations if they wanted to, but no local government could have standards that fell below the floor put in place by the Act. The Governor has had a bill introduced in the Legislature that is patterned after the law we proposed. The State Assembly has held public hearings on the bill and it is hopeful that in the 1990 legislative session, New Yorkers will get the strong municipal ethics law they need and deserve
    • …
    corecore