52 research outputs found

    A multidisciplinary stroke clinic for outpatient care of veterans with cerebrovascular disease

    Get PDF
    Background: Managing cerebrovascular risk factors is complex and difficult. The objective of this program evaluation was to assess the effectiveness of an outpatient Multidisciplinary Stroke Clinic model for the clinical management of veterans with cerebrovascular disease or cerebrovascular risk factors. Methods: The Multidisciplinary Stroke Clinic provided care to veterans with cerebrovascular disease during a one-half day clinic visit with interdisciplinary evaluations and feedback from nursing, health psychology, rehabilitation medicine, internal medicine, and neurology. We conducted a program evaluation of the clinic by assessing clinical care outcomes, patient satisfaction, provider satisfaction, and costs. Results: We evaluated the care and outcomes of the first consecutive 162 patients who were cared for in the clinic. Patients had as many as six clinic visits. Systolic and diastolic blood pressure decreased: 137.2 ± 22.0 mm Hg versus 128.6 ± 19.8 mm Hg, P = 0.007 and 77.9 ± 14.8 mm Hg versus 72.0 ± 10.2 mm Hg, P = 0.004, respectively as did low-density lipoprotein (LDL)-cholesterol (101.9 ± 23.1 mg/dL versus 80.6 ± 25.0 mg/dL, P = 0.001). All patients had at least one major change recommended in their care management. Both patients and providers reported high satisfaction levels with the clinic. Veterans with stroke who were cared for in the clinic had similar or lower costs than veterans with stroke who were cared for elsewhere. Conclusion: A Multidisciplinary Stroke Clinic model provides incremental improvement in quality of care for complex patients with cerebrovascular disease at costs that are comparable to usual post-stroke care

    Developing a strategy for the national coordinated soil moisture monitoring network

    Get PDF
    Soil moisture is a critical land surface variable, affecting a wide variety of climatological, agricultural, and hydrological processes. Determining the current soil moisture status is possible via a variety of methods, including in situ monitoring, remote sensing, and numerical modeling. Although all of these approaches are rapidly evolving, there is no cohesive strategy or framework to integrate these diverse information sources to develop and disseminate coordinated national soil moisture products that will improve our ability to understand climate variability. The National Coordinated Soil Moisture Monitoring Network initiative has developed a national strategy for network coordination with NOAA’s National Integrated Drought Information System. The strategy is currently in review within NOAA, and work is underway to implement the initial milestones of the strategy. This update reviews the goals and steps being taken to establish this national-scale coordination for soil moisture monitoring in the United States

    Systems biology driven software design for the research enterprise

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In systems biology, and many other areas of research, there is a need for the interoperability of tools and data sources that were not originally designed to be integrated. Due to the interdisciplinary nature of systems biology, and its association with high throughput experimental platforms, there is an additional need to continually integrate new technologies. As scientists work in isolated groups, integration with other groups is rarely a consideration when building the required software tools.</p> <p>Results</p> <p>We illustrate an approach, through the discussion of a purpose built software architecture, which allows disparate groups to reuse tools and access data sources in a common manner. The architecture allows for: the rapid development of distributed applications; interoperability, so it can be used by a wide variety of developers and computational biologists; development using standard tools, so that it is easy to maintain and does not require a large development effort; extensibility, so that new technologies and data types can be incorporated; and non intrusive development, insofar as researchers need not to adhere to a pre-existing object model.</p> <p>Conclusion</p> <p>By using a relatively simple integration strategy, based upon a common identity system and dynamically discovered interoperable services, a light-weight software architecture can become the focal point through which scientists can both get access to and analyse the plethora of experimentally derived data.</p

    XGAP: a uniform and extensible data model and software platform for genotype and phenotype experiments.

    Get PDF
    We present an extensible software model for the genotype and phenotype community, XGAP. Readers can download a standard XGAP (http://www.xgap.org) or auto-generate a custom version using MOLGENIS with programming interfaces to R-software and web-services or user interfaces for biologists. XGAP has simple load formats for any type of genotype, epigenotype, transcript, protein, metabolite or other phenotype data. Current functionality includes tools ranging from eQTL analysis in mouse to genome-wide association studies in humans.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Enterprise-Wide Worklist Management

    No full text

    CHEMILUMINESCENT ASSOCIATIVE IONIZAION IN ALKALINE EARTH-METASTABLE ARGON COLLISIONS

    No full text
    1^{1}K. V. Subbaram, J.A. Coxon, and W.E. Jones, Can. J. Phys. 54, 1535 (19750). 2^{2}J. H. Goble, D. C. Hartman, and J. S. Winn, J. Chem. Phys. 67, 4206 (1977).""Author Institution: Department of Chemistry, University of CaliforniaEnergy transfer form metastable Ar, produced in a flowing afterglow, to atomic Ca results in chemiluminescent chemiionization of Ca and chemiluminescent associative ionization, forming CaAr+(A2Π)CaAr^{+}(A^{2}\Pi). Inversion of the A2ΠX2Σ+A^{2}\Pi\rightarrow X^{2}\Sigma^{+} spectrum of BeAr+BeAr^{+} reported by Subbaram, etal.,1et al.,^{1} yields potential functions which can be2be^{2} very accurately matched by a model potential of the form V(R)=Aexp(βR)Z2e2α/2R4V(R) = Aexp(-\beta R) - Z^{2}e^{2} \alpha/2R^{4}, where z is the effective charge of the alkaline earth ion. We have used this potential to analyze of the CaAr+CaAr^{+} emission spectrum. These molecular ions exhibit bonding properties intermediate to chemically bound diatomics and to Van der Waals diatomics. An additional phenomenon, laser-assisted excitive Penning ionization, will be discussed whereby a laser field which is not resonant with either the products or the reactants of a collision but is resonant with the collision itself, can alter the product states

    A survey of design issues in spatial input

    No full text
    We present a survey of design issues for developing effective free-space three-dimensional (3D) user interfaces. Our survey is based upon previous work in 3D interaction, our experience in developing free-space interfaces, and our informal observations of test users. We illustrate our design issues using examples drawn from instances of 3D interfaces. For example, our first issue suggests that users have difficulty understanding three-dimensional space. We offer a set of strategies which may help users to better perceive a 3D virtual environment, including the use of spatial references, relative gesture, two-handed interaction, multisensory feedback, physical constraints, and head tracking. We describe interfaces which employ these strategies. Our major contribution is the synthesis of many scattered results, observations, and examples into a common framework. This framework should serve as a guide to researchers or systems builders who may not be familiar with design issues in spatial input. Where appropriate, we also try to identify areas in free-space 3D interaction which we see as likely candidates for additional research. An extended and annotated version of the references list for this paper is available on-line through mosaic at addres

    New Applications for the Touchscreen in 2D and 3D Medical Imaging Workstations

    No full text
    We present a new interface technique which augments a 3D user interface based on the physical manipulation of tools, or props, with a touchscreen. This hybrid interface intuitively and seamlessly combines 3D input with more traditional 2D input in the same user interface. Example 2D interface tasks of interest include selecting patient images from a database, browsing through axial, coronal, and sagittal image slices, or adjusting image center and window parameters. Note the facility with which a touchscreen can be used: the surgeon can move in 3D using the props, and then, without having to put the props down, the surgeon can reach out and touch the screen to perform 2D tasks. Based on previous work by Sears, we provide touchscreen users with visual feedback in the form of a small cursor which appears above the finger, allowing targets much smaller than the finger itself to be selected. Based on our informal user observations to date, this touchscreen stabilization algorithm allows ta..
    corecore