197 research outputs found

    The syntax of slavic predicate case

    Get PDF
    In this article I provide a syntactic framework for case patterns found in Slavic secondary predicates

    Complete Multiwavelength Evolution of Galactic Black Hole Transients During Outburst Decay II: Compact Jets and X-ray Variability Properties

    Get PDF
    We investigated the relation between compact jet emission and X-ray variability properties of all black hole transients with multiwavelength coverage during their outburst decays. We studied the evolution of all power spectral components (including low frequency quasi-periodic oscillations), and related this evolution to changes in jet properties tracked by radio and infrared observations. We grouped sources according to their tracks in radio/X-ray luminosity relation, and show that the standards show stronger broadband X-ray variability than outliers at a given X-ray luminosity when the compact jet turned on. This trend is consistent with the internal shock model and can be important for the understanding of the presence of tracks in the radio/X-ray luminosity relation. We also observed that the total and the QPO rms amplitudes increase together during the earlier part of the outburst decay, but after the compact jet turns either the QPO disappears or its rms amplitude decreases significantly while the total rms amplitudes remain high. We discuss these results with a scenario including a variable corona and a non-variable disk with a mechanism for the QPO separate from the mechanism that create broad components. Finally, we evaluated the timing predictions of the magnetically dominated accretion flow model which can explain the presence of tracks in the radio/X-ray luminosity relation.Comment: Accepted for publication by Ap

    Frozen Scope and WCO: New Insights into the Structure of Russian Ditransitives

    Get PDF
    We present novel data on Russian ditransitives with two Quantificational objects, which parallel the relevant English facts (Larson 1990) whereby inverse scope disappears when the quantificational Dative precedes the quantificational Accusative within the VP. We argue that the Russian facts should not be analyzed in terms of Superiority, as in English (Bruening 2001). Furthermore, wider possibilities for overt QP displacement in Russian and the scope freezing that obtains in such contexts (Antonyuk-Yudina 2009), taken with the observed parallelism between the two languages in the relevant respects, allow us a new perspective on the scope freezing in ditransitives for both languages

    On “historical unity” of Russian and Ukrainian: A linguistic perspective on language conflict and change

    Get PDF
    This paper focuses on Putin’s (2021) misguided claim regarding “historical [linguistic] unity” of Russian and Ukrainian. Their being two distinct languages is not in question, as opposed (for example) to Serbian and Croatian. However, it is important to substantiate the objective reality of those differences, taking a strong stand against unjustified claims about linguistic [unity] where there are no grounds for them. Implementing a Python-coded algorithm, like those described in Nerbonne & Kretzschmar 2013, we calculate Levenshtein distance between frequency-based word lists, in a manner sensitive to both organic and contact-induced change, to fully reveal Ukrainian’s complex relationship with both Russian and Polish

    Optical and Near Infrared Monitoring of the Black-Hole X-ray Binary GX 339-4 During 2002-2010

    Get PDF
    We present the optical/infra-red lightcurve (O/IR) of the black hole X-ray binary GX 339-4 collected at the SMARTS 1.3m telescope from 2002 to 2010. During this time the source has undergone numerous state transitions including hard-to-soft state transitions when we see large changes in the near-IR flux accompanied by modest changes in optical flux, and three rebrightening events in 2003, 2005 and 2007 after GX 339-4 transitioned from the soft state to the hard. All but one outburst show similar behavior in the X-ray hardness-intensity diagram. We show that the O/IR colors follow two distinct tracks that reflect either the hard or soft X-ray state of the source. Thus, either of these two X-ray states can be inferred from O/IR observations alone. From these correlations we have constructed spectral energy distributions of the soft and hard states. During the hard state, the near-IR data have the same spectral slope as simultaneous radio data when GX 339-4 was in a bright optical state, implying that the near-IR is dominated by a non-thermal source, most likely originating from jets. Non-thermal emission dominates the near-IR bands during the hard state at all but the faintest optical states, and the fraction of non-thermal emission increases with increasing optical brightness. The spectral slope of the optical bands indicate that a heated thermal source is present during both the soft and hard X-ray states, even when GX 339-4 is at its faintest optical state. We have conducted a timing analysis of the light curve for the hard and soft states and find no evidence of a characteristic timescale within the range of 4-230 days.Comment: Accepted for publication in AJ, Table 3 can be viewed at http://www.astro.yale.edu/buxton/GX339

    Complete multiwavelength evolution of galactic black hole transients during outburst decay I: conditions for "compact" jet formation

    Get PDF
    Compact, steady jets are observed in the near infrared and radio bands in the hard state of Galactic black hole transients as their luminosity decreases and the source moves towards a quiescent state. Recent radio observations indicate that the jets turn o completely in the soft state, therefore multiwavelength monitoring of black hole transients are essential to probe the formation of jets. In this work we conducted a systematic study of all black hole transients with near infrared and radio coverage during their outburst decays. We characterized the timescales of changes in X-ray spectral and temporal properties and also in near infrared and/or in radio emission. We confirmed that state transitions occur in black hole transients at a very similar fraction of their respective Eddington luminosities. We also found that the near infrared flux increase that could be due to the formation of a compact jet is delayed by a time period of days with respect to the formation of a corona. Finally, we found a threshold disk Eddington luminosity fraction for the compact jets to form. We explain these results with a model such that the increase in the near infrared flux corresponds to a transition from a patchy, small scale height corona along with an optically thin out flow to a large scale height corona that allows for collimation of a steady compact jet. We discuss the timescale of jet formation in terms of transport of magnetic fields from the outer parts of the disk, and also consider two alternative explanations for the multiwavelength emission: hot inner accretion flows and irradiation

    X-ray, Optical and Infrared Observations of GX 339-4 During Its 2011 Decay

    Get PDF
    We report multiwavelength observations of the black hole transient GX 339-4 during its outburst decay in 2011 using the data from RXTE, Swift and SMARTS. Based on the X-ray spectral, temporal, and the optical/infrared (OIR) properties, the source evolved from the soft-intermediate to the hard state. Twelve days after the start of the transition towards the hard state, a rebrightening was observed simultaneously in the optical and the infrared bands. Spectral energy distributions (SED) were created from observations at the start, and close to the peak of the rebrightening. The excess OIR emission above the smooth exponential decay yields flat spectral slopes for these SEDs. Assuming that the excess is from a compact jet, we discuss the possible locations of the spectral break that mark the transition from optically thick to optically thin synchrotron components. Only during the rising part of the rebrightening, we detected fluctuations with the binary period of the system. We discuss a scenario that includes irradiation of the disk in the intermediate state, irradiation of the secondary star during OIR rise and jet emission dominating during the peak to explain the entire evolution of the OIR light curve.Comment: 10 pages with 11 figures, accepted for publication in Ap

    The spectral energy distribution of quiescent black hole X-ray binaries: new constraints from Spitze

    Get PDF
    Among the various issues that remain open in the field of accretion onto black hole X-ray binaries (BHBs) is the question of how gas accretes at very low Eddington ratios, in the so-called quiescent regime. While there is general agreement that X-rays are produced by a population of high-energy electrons near the BH, there is controversy concerning the modeling of the contributions of inflowing versus outflowing particles and their relative energy budget. Recent Spitzer observations of three quiescent BHBs have shown evidence for excess emission with respect to the Rayleigh-Jeans tail of the companion star between 8-24 ÎĽm. We suggest that synchrotron emission from a partially self-absorbed outflow might be responsible for the observed mid-IR excess, in place of, or in addition to, thermal emission from circumbinary material. If so, then the jet synchrotron luminosity, integrated from radio to near-IR frequencies, exceeds the measured 2-10 keV luminosity by a factor of a few in these systems. In turn, the mechanical power stored in the jet exceeds the bolometric X-ray luminosity by at least 4 orders of magnitude. We compile the broadband spectral energy distribution (SED) of A0620-00, the lowest Eddington-ratio stellar mass BH with a known radio counterpart, by means of simultaneous radio, optical, and X-ray observations, and the archival Spitzer data. We are able to fit the SED of A0620-00 with a maximally jet-dominated model, in which the radio through the soft X-rays are dominated by synchrotron emission, while the hard X-rays are dominated by inverse Compton at the jet base. The fitted parameters land in a range of values reminiscent of the Galactic center supermassive black hole Sgr A*. Most notably, the inferred ratio of the jet acceleration rate to local cooling rates is 2 orders of magnitude weaker than higher luminosity, hard-state sources

    Astro2020 APC White Paper. 2020 Vision: Towards a Sustainable OIR System

    Get PDF
    Open-access telescopes of all apertures are needed to operate a competitive and efficient national science program. While larger facilities contribute light-gathering power and angular resolution, smaller ones dominate for field of view, time-resolution, and especially, total available observing time, thereby enabling our entire, diversely-expert community. Smaller aperture telescopes therefore play a critical and indispensable role in advancing science. Thus, the divestment of NSF support for modest-aperture (1 – 4 m) public telescopes poses a serious threat to U.S. scientific leadership, which is compounded by the unknown consequences of the shift from observations driven by individual investigators to survey-driven science. Given the much higher cost efficiency and dramatic science returns for investments in modest aperture telescopes, it is hard to justify funding only the most expensive facilities. We therefore urge the Astro2020 panel to explicitly make the case for modest aperture facilities, and to recommend enhancing this funding stream to support and grow this critical component of the OIR System. Further study is urgently needed to prioritize the numerous exciting potential capabilities of smaller facilities,and to establish sustainable, long-term planning for the System
    • …
    corecore