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ABSTRACT

Compact, steady jets are observed in the near infrared and radio bands in the hard state of Galactic
black hole transients as their luminosity decreases and the source moves towards a quiescent state.
Recent radio observations indicate that the jets turn off completely in the soft state, therefore mul-
tiwavelength monitoring of black hole transients are essential to probe the formation of jets. In this
work we conducted a systematic study of all black hole transients with near infrared and radio cov-
erage during their outburst decays. We characterized the timescales of changes in X-ray spectral
and temporal properties and also in near infrared and/or in radio emission. We confirmed that state
transitions occur in black hole transients at a very similar fraction of their respective Eddington lu-
minosities. We also found that the near infrared flux increase that could be due to the formation of a
compact jet is delayed by a time period of days with respect to the formation of a corona. Finally, we
found a threshold disk Eddington luminosity fraction for the compact jets to form. We explain these
results with a model such that the increase in the near infrared flux corresponds to a transition from
a patchy, small scale height corona along with an optically thin outflow to a large scale height corona
that allows for collimation of a steady compact jet. We discuss the timescale of jet formation in terms
of transport of magnetic fields from the outer parts of the disk, and also consider two alternative
explanations for the multiwavelength emission: hot inner accretion flows and irradiation.
Subject headings: black hole physics – X-rays:stars – accretion, accretion disks – binaries:close

1. INTRODUCTION

Galactic black hole transients (GBHT) show distinct
spectral and temporal changes during the decay of out-
bursts across all wavelengths. At the start of the out-
burst decay, the GBHTs are usually in the soft state,
the X-ray spectrum is dominated by emission from an
optically thick, geometrically thin disk, and the rms am-
plitude of variability is less than a few percent. As the
flux decays, a sudden increase occurs in the rms ampli-
tude of variability accompanied by an increase in the non-
thermal emission often associated with Compton scatter-
ing of soft photons by a hot electron corona. After ∼10–
20 days or less, the non-thermal emission (often modeled
with a power-law in the X-ray spectrum) dominates the
X-ray flux above 3 keV as the source enters the hard
state. The detailed description of spectral states and the
general evolution of GBHTs during the entire outburst
can be found in Belloni (2010) and references therein.
The changes in X-ray spectral and temporal properties
specifically during the outburst decay are described in
detail in Kalemci et al. (2004).

Contemporaneous observations of GBHTs in radio, op-
tical and near infrared (NIR) during the decay provide
additional information about the accretion/ejection be-
havior of these sources. Radio observations track the be-
havior of jets in these systems. It is well established that
the jet is quenched significantly in the soft state (Corbel
& Fender 2002; Russell et al. 2011), and a steady com-
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pact jet is observed in the hard state during outburst
decay as evidenced by a flat to inverted radio spectrum
(Corbel et al. 2000; Fender 2001). Jets may also be re-
vealing themselves when secondary maxima in the op-
tical and NIR fluxes occur during decay. At the start
of the decay, the NIR fluxes decay along with the X-ray
flux. At some point, the NIR flux increases, peaks and
then falls down within a timescale of months as shown
in Fig. 1. This happens when the source is fully back in
the hard state with its X-ray spectrum close to its hard-
est level (Kalemci et al. 2005; Coriat et al. 2009; Russell
et al. 2010; Dinçer et al. 2012; Buxton et al. 2012).The
spectral energy distributions (SED) created from data
during the NIR peaks of 4U 1543−47 (Buxton & Bailyn
2004; Kalemci et al. 2005) and XTE J1550−564 (Jain
et al. 2001; Russell et al. 2010) show a flat or inverted
power-law at radio frequencies that breaks, usually at
NIR wavelengths, to a second power-law with negative
spectral index consistent with emission from a compact,
conical jet (Blandford & Konigl 1979; Hjellming & John-
ston 1988). Given the similar NIR evolution observed in
GX 339−4 (Coriat et al. 2009; Buxton et al. 2012) and
partially also in XTE J1752−223 (Chun et al. 2013), it
is reasonable to assume that the NIR peaks in the hard
state have a jet origin. On the other hand, SEDs created
during the early parts of the NIR peak for GX 339−4
are not consistent with optically thin emission from a
jet: they are rather flat, even inverted up to the V band.
This can be explained with extra emission components
at high frequencies on top of the the optically thin syn-
chrotron (Coriat et al. 2009; Dinçer et al. 2012; Rahoui
et al. 2012).

Compared to the NIR coverage, the radio coverage of
GBHTs is usually sparse (see Figures 1 and 2). During
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the transition from the soft state to the hard state, few
radio detections exist for XTE J1720−318(Brocksopp
et al. 2005; Fender, Homan & Belloni 2009), and
H1743−322(Jonker et al. 2010; Miller-Jones et al. 2012).
For two cases, there is enough simultaneous coverage of
radio, NIR-optical, and X-rays which provided a bet-
ter understanding of the relation between the jet and
the NIR peak. Observations of GX 339−4 published re-
cently (Corbel et al. 2013b,a) show that the NIR rise
may correspond to a transition in radio from optically
thin to optically thick emission in the 2011 outburst de-
cay. Similarly, XTE J1752−223 also shows an increase
in the radio spectral index α (defined as Fν ∝ να where
Fν is the radio flux density and ν is the frequency), and
radio spectrum becoming consistent with a flat spectrum
during a large NIR peak during the decay of the outburst
(see Fig. 2, and also Brocksopp et al. 2013; Chun et al.
2013).

The NIR peaks that are associated with jets also exist
in the hard state during the rise of the outbursts (Coriat
et al. 2009; Buxton et al. 2012; Russell et al. 2007). How-
ever, it is difficult to catch the start of the outbursts, and
often, when the source is detected in X-rays, the compact
jets are already present. On the other hand, the outburst
decays allow us to investigate the relation between the
X-ray spectral properties and the NIR/radio flux and
spectral evolution in detail as the multiwavelength jet
emission turns on and increases while the GBHTs make
a transition from the soft to the hard state.The prop-
erties of some of the individual black hole sources are
already discussed in Kalemci et al. (2005, 2006a); Jonker
et al. (2010); Ratti et al. (2012), and preliminary analy-
sis of the overall behavior of many sources is discussed in
Kalemci et al. (2006b, 2008). In this work, we present an
in-depth, systematic multiwavelength analysis of all GB-
HTs covered well with RXTE in X-rays, SMARTS (Sub-
asavage et al. 2010), in NIR and in radio. The failed
outbursts are excluded from this study because we are
interested in sources that go through the soft state. We
emphasize changes (or lack thereof) in X-ray spectral
properties when the jet related emission is first observed
in NIR and radio, and we also discuss the timescale for
jet formation. A second article which will discuss the re-
lation between jet emission and X-ray timing properties
is also being prepared (Dinçer et al. 2013).

2. OBSERVATIONS AND ANALYSIS

2.1. X-ray spectral analysis

We use PCA in the 3–25 keV band and HEXTE in
the 15–200 keV band (see Bradt, Rothschild & Swank
1993 for instrument descriptions) and fit the spectra to-
gether. However, we do not include the HEXTE data
if the background-subtracted 20–100 keV count rate in
cluster A is less than 3 cts/s. Also, HEXTE data were
not used after cluster B stopped rocking on December
14, 2009. For PCA, we use all the available PCUs for all
observations and include systematic errors at a level of
0.8% up to 7 keV and 0.4% above 7 keV.

For all sources, the HEXTE background fields are
checked using the HEXTEROCK utility and compared
to Galactic bulge scans. Only fields not contaminated
with sources or strong background are used. HEXTE
spectra are corrected for deadtime (Rothschild et al.

1998).
The Galactic ridge emission is a factor for some of the

sources at low flux levels. The ridge contribution is de-
termined by one of the two methods described below.
If there is a simultaneous observation at low flux levels
with an X-ray telescope (such as XMM-Newton or the
Chandra) along with RXTE, we compare the spectra to
determine the ridge spectrum. If there is no such si-
multaneous observation, we check the PCA light curves
at the lowest flux levels and look for a level of constant
flux. These observations are merged to model the ridge
spectrum.

The first spectral model we try for all observations con-
sists of absorption (“phabs” in XSPEC), a smeared edge
(“smedge” in XSPEC, Ebisawa et al. 1994), a multicolor
disk blackbody (“diskbb” in XSPEC, Makishima et al.
1986), a power law “power” in XSPEC), a narrow Gaus-
sian to model the iron line, and, if necessary, the ridge
emission. This model has been commonly used for the
spectral analysis of black holes in the hard state (Tom-
sick & Kaaret 2000; Sobczak et al. 2000; Kalemci et al.
2005). The hydrogen column density is fixed to values
found in the literature. The smeared edge width is fixed
to 10 keV. For each observation, we then introduce a
high energy cut-off (“highecut” in XSPEC) to the model
and check the improvement in the fit using F-test. If the
chance probability becomes less than 0.001, we include
the cut-off in the fit.

Table 1
Masses and distances used

Source Mass Distance b sepa Referencesb

(M�) kpc

GRO J1655−40 7.0±0.2 3.2±0.2c 38 1, 2
GX 339−4 [8]d 8±2 42.1 1
XTE J1550−564 9.1±0.6 4.4±0.5 37 3
H1743−322 [8] 8.5±0.8 - 4
4U 1543−47 9.4±2 7.5±0.5 23 1
XTE J1752−223 9.5±1.5 [8]e - 5, 6
XTE J1720−318 [8] [8] - 7
aBinary seperation, in lightseconds
b1: Dunn et al. (2010), 2: Foellmi et al. (2006), 3: Orosz et al.

(2011), 4: Steiner, McClintock & Reid (2012), 5: Shaposhnikov
et al. (2010), 6: Chun et al. (2013), 7: Cadolle Bel et al. (2004).
Most of the references are from Dunn et al. (2010), Table 1.
cFoellmi et al. (2006) reported an alternative distance of <1.7 kpc
dBased on Kreidberg et al. (2012) and Özel et al. (2010)
e3.5±1.5 according to Shaposhnikov et al. (2010), however our

work indicates distance greater than 5 kpc (Chun et al. 2013)

Using the black hole mass and distance values reported
in Table 1, we calculated the Eddington Flux for each
source. If necessary, we extrapolated our X-ray spectra
to the 3–200 keV band using the spectral fits and de-
fined the Eddington Luminosity Fraction (ELF) as the
ratio of 3–200 keV flux to the Eddington Flux of each
source. This method underestimates the actual Edding-
ton Luminosity Fraction because we are not calculating
the bolometric luminosity. There are also some uncer-
tainties coming from the extrapolation of the X-ray spec-
trum to 3–200 keV when HEXTE is not used. However,
given the large uncertainties in mass and distance and
also since the total energy budget should be dominated
by X-rays, these uncertainties do not affect our results
significantly.
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2.2. X-ray temporal analysis

We use Tübingen Timing Tools in IDL to compute the
power density spectra (PDS) of all observations using
PCA light curves in the 3–25 keV band. The dead time
effects are removed according to Zhang et al. (1995) with
a dead-time of 10µs per event, and the PDS is normalized
according to Miyamoto & Kitamoto (1989). Broad and
narrow Lorentzians are used for fitting (Kalemci et al.
2005; Pottschmidt 2002). The rms amplitudes are calcu-
lated by integrating Miyomoto normalized PDS from 0
Hz to infinity. The rms amplitudes are corrected with a
factor T

(T−(R+B)) , where T is the overall count rate, B is

the background rate, and R is the count rate due to the
Galactic ridge, to obtain the variability inherent to the
source (Berger & van der Klis 1994)4. In this work, the
timing information is only used for determining the state
transitions. For a detailed analysis of timing properties
of all sources during the decay, see Dinçer et al. (2013)

2.3. Determining NIR and Radio transitions

An important goal of this work is to find the time of
compact jet formation relative to changes in X-ray spec-
tral and temporal parameters. We assume that the flare
in the NIR is due to the emission from a compact jet
(see Fig. 1). For an in-depth discussion of this assump-
tion, see §4.1. The NIR flare rises above a baseline NIR
emission, which may arise from the accretion disk. We
fit the baseline NIR flux as a function of time with an
exponential to determine the non-flare emission. Then,
we fit the initial rise of the flare above this baseline with
a linear function to find the start time for GX 339−4,
4U 1543−47, and XTE J1550−564. This procedure is
explained in detail in the Appendix.

We also investigate the evolution of radio flux and spec-
trum to find the times that the emission becomes opti-
cally thick, indicating compact, steady jets (see Figure 2
for the evolution of radio fluxes and X-ray photon index
for sources not shown in Fig. 1). For observations with
multi-frequency spectra, we define the radio transition as
the time when the radio spectral indices of the particular
observation and the remaining observations are greater
or equal to zero within the 1 σ error. These dates are
shown with dashed lines in Figure 2, and tabulated in
Table 2 (labeled ”Compact”) along with the dates of the
first radio detections of the sources (labeled ”First”). De-
tails of observations for individual sources are provided
in the Appendix.

2.4. The sources

For the systematic analysis, we use 7 sources in 12 out-
burst decays. For general information on most of these
sources and outbursts, see Dunn et al. (2010). The black
hole mass and distance estimates that we used are sum-
marized in Table 1. Specific information is given below:

GX 339−4: The RXTE data from this recurrent source
have been analyzed extensively in all outbursts. We
utilized four outburst decays: 2003 (MJD 52,680−MJD
52,780, Kalemci et al. 2006b); 2005 (MJD 53,459−MJD
53,496); 2007 (MJD 54,220−MJD 54,265, Kalemci et al.

4 In Kalemci et al. (2006a), the correction is erroneously stated
with the square of the factors, which is the correct factor for the
PSD but not for the rms amplitude of the variability.

2008), and 2010 (MJD 55,560−MJD 55,650, Dinçer et al.
2012). The data and details of the analysis of the
SMARTS observations can be found in Buxton et al.
(2012). The ATCA radio fluxes are taken from Corbel
et al. (2013b,a).

4U 1543−47: We utilize SMARTS for NIR, ATCA and
MOST for radio, and RXTE for X-rays for the decay of
the 2002 outburst of the source, between MJD 52,464
and MJD 52,499 (Kalemci et al. 2005; Buxton & Bailyn
2004).
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Figure 1. Evolution of power law photon indices (Γ, black solid
circles) along with evolution in near infrared magnitudes (gray solid
circles, red in the color version), and radio fluxes (open circles and
triangles, blue in the color version). The radio fluxes (in units of
mJy) are indicated in the inner part of the y-axis on the right hand
side. The dashed lines show the start of the NIR flare. Time 0 de-
notes the time of the timing transition (see § 3 and the Appendix).
A color version of this figure is present in the online version.
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GRO J1655−40: We utilize the VLA5 radio and RXTE
observations of this source during the 2005 outburst de-
cay, between MJD 53,625 and MJD 53,645. The evo-
lution of X-ray spectral parameters can be found in
Kalemci et al. (2006b). The SMARTS light curve of
GRO J1655−40 for the 2005 outburst is dominated by
the nearly periodic emission coming from the companion,
which is a bright F-type subgiant (Foellmi et al. 2006),
and there is no secondary flare (see Dinçer et al. 2008,
for the J-band light curve of this source).

XTE J1550−564: We use the RXTE and SMARTS
data from the 2001 decay of this source, between MJD
51,669 and MJD 51,703. The details of the RXTE anal-
ysis can be found in Kalemci et al. (2001) and Tomsick
& Kaaret (2001). The SMARTS data are obtained from
Jain et al. (2001). See also Russell et al. (2010) for a
detailed multi-wavelength analysis of the decay of 2001
outburst.

XTE J1752−223: RXTE and SMARTS observations
of this source during the decay of the 2010 outburst
(MJD 55,240−MJD 55,370) have been analyzed by Chun
et al. (2013). See also Russell et al. (2012) and Ratti et al.
(2012) for an in-depth discussion of multiwavelength ob-
servations during the decay of the outburst. The radio
data are taken from Brocksopp et al. (2013) and Yang
et al. (2011).

H1743−322: This source has no NIR coverage due to
its position in the Galactic plane but is covered amply in
radio during its outbursts. We include data from three
outburst decays for this source. For the 2003 outburst
decay, the X-ray and radio data are from Kalemci et al.
(2006a) and McClintock et al. (2009), respectively. For
the 2008 and 2009 outburst decays, we conducted X-
ray spectral and timing analysis as described in §2.1 and
§2.2.The hydrogen column density is fixed to 2.3 × 1022

cm−2 following Kalemci et al. (2006a). For radio fluxes,
we used Jonker et al. (2010) for the 2008 outburst, and
Miller-Jones et al. (2012) for the 2009 outburst.

XTE J1720−318: This source has moderate radio cov-
erage at the rise of the outburst; however, the coverage is
not as good during the decay. For the radio we used VLA
and ATCA data taken from Brocksopp et al. (2005). It
is also followed in NIR and optical, but there are only a
couple of observations during the decay (Chaty & Besso-
laz 2006). We conduct spectral and timing analysis as
described in §2.1 and §2.2. The hydrogen column density
is fixed to 1.2 × 1022 cm−2 following Cadolle Bel et al.
(2004).

3. RESULTS

In our prior work, we showed that there are certain
changes in X-ray spectral and timing properties of GB-
HTs along with changes in the NIR and radio properties
(Kalemci et al. 2006b, 2008). We established that during
outburst decay, a sharp change in the timing properties
takes place first, with an abrupt increase in the rms am-
plitude of variability accompanied with an increase in the
power-law flux (Kalemci et al. 2004). This transition is
called the “timing transition” (TT) in this work (see the
Appendix for the details of how we determine the TT for
each source). For figures starting from Fig. 3, the obser-

5 http://www.aoc.nrao.edu/~mrupen/XRT/GRJ1655-40/
grj1655-40.shtml
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Figure 2. Evolution of power law photon indices (Γ, black solid
circles) along with evolution in radio (see legend). The dashed
lines show the time beyond which the jet is optically thick. A color
version of this figure is available in the online version.

vations before this transition are shown with orange in
the color version and are denoted as “Before TT”. This
transition is also the reference date that is denoted with
time 0 in the figures. Note that the TT is often not
associated with a change in the power-law index.

The next important change is the significant hardening
of the spectra (see Figs. 1, 2). This transition is called the
index transition (IT) in this work (see Appendix for the
details of how we determine the IT). In the figures, the
observations after the TT but before the IT are shown
with green in the color version and denoted as “After
TT / before IT”. The next transition is the increase
in the NIR flux and/or radio detection of the compact
jet. Since we assumed that the NIR increase is due to
the formation of the compact jet, we define a “compact

http://www.aoc.nrao.edu/~mrupen/XRT/GRJ1655-40/grj1655-40.shtml
http://www.aoc.nrao.edu/~mrupen/XRT/GRJ1655-40/grj1655-40.shtml
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Table 2
Transition times and Eddington Luminosity Fractions

Timing Transition (TT) Index Transition (IT) NIR Transition Radio Transition
Source, Year Date ELF Laga ELF Lag ELF Firstb Compactc ELFd

(MJD) (%) (days) (%) (days) (%) (days) (days) (%)

GX339-4, 2003 52717.8±0.3 0.88±0.61 6.6±0.3 1.34±0.55 22.2±2.8 1.70±1.17 − − −
GX339-4, 2005 53461.3±1.8 0.90±0.62 5.4±0.7 1.89±0.41 15.1±1.0 2.49±1.71 < 20.4 < 20.4 2.85±1.30
GX339-4, 2007 54228.0±0.4 1.22±0.84 5.0±0.3 1.21±0.76 12.9±1.3 2.28±1.57 < 23.7 < 23.7 1.54±0.83
GX339-4, 2011 55594.0±0.7 1.05±0.72 2.2±0.5 1.40±0.67 12.2±1.1 1.43±0.98 4.9 16.1 1.24±0.96
4U1543-47, 2002 52473.7±0.5 1.54±0.53 5.7±0.4 1.18±0.34 9.9±1.0 1.31±0.45 < 13.3 < 16.3 0.23±0.41
XTEJ1550-564, 2000 51674.0±0.6 3.05±0.89 0.6±0.4 3.05±0.89 12.3±1.0 1.70±0.50 − − −
XTEJ1752-223, 2009 55282.1±2.1 0.91±0.60 3.7±0.9 1.89±0.48 − − < 0.0 < 29.4 1.97±1.24
GRO J1655-40, 2005 53628.1±0.1 0.75±0.15 1.3±1.1 1.17±0.13 − − < 5.9 < 5.9 1.21±0.24
H1743-322, 2003 52930.4±0.5 1.73±0.65 5.7±0.2 1.69±0.50 − − < 9.6 < 17.6 0.66±0.64
H1743-322, 2008 54488.3±0.9 2.45±0.92 8.8±0.6 2.05±0.76 − − < 11.4 < 14.3 1.81±0.77
H1743-322, 2009 55014.7±1.6 2.35±0.88 9.0±1.0 1.60±0.80 − − < 0.0 < 11.5 1.26±0.60
XTE J1720-318, 2003 52726.6±0.0 0.56±0.38 -5.0±1.0 0.30±0.41 − − < 2.0 < 28.9 0.97±0.20

aAll lags are with respect to the timing transition
bTime of the first radio detection with respect to the TT
cTime of the first flat/inverted radio spectrum, or the first detection of the compact core with respect to the TT
dELF of the Compact radio transition

jet transition” (CJT). For GX 339−4, 4U 1543−47, and
XTE J1550−564 the CJT corresponds to the ”NIR Tran-
sition”, and for the rest of the outbursts, it corresponds
to the ”Compact” radio transition in Table 2. The obser-
vations before CJT and after the IT are shown with blue
in the color version and denoted as “After IT / before
CJT”. Finally, all observations after the CJT are shown
in red in the color version.

3.1. Transition luminosities

In Fig. 3, we plot the evolution of the Eddington Lu-
minosity Fraction, ELF, of all sources we investigated as
a function of time. The color scheme is explained above.
As already established by Maccarone (2003), the tran-
sition to the hard state occurs at similar ELFs. This
figure includes two sets of data for XTE J1752−223 and
GRO J1655−40 due to differences in distance measure-
ments by different groups. The data with distance values
given in Table 1 are shown with large symbols, and the
alternative cases are shown with black, smaller symbols.
For later figures, we do not show data with alternative
distances since they can easily be scaled. Also, the plots
that used ELFs do not include error bars. Due to large
uncertainties in the distance measurements, the errors
in luminosities are large (up to 50% for GX 339−4 and
XTE J1752−223) and clutter the figures. Thus, the fig-
ures with luminosities should be regarded with some cau-
tion. The errors are incorporated in the measurements
and discussion. The ELFs and times of transitions with
respective errors can be found in Table 2.

The disk blackbody (diskbb) ELF evolution provides
striking patterns during important spectral changes dur-
ing the decay (see Fig. 4, left). The decays of the diskbb
ELF are exponential for each source, but the decay rate is
different before and after the TT. The diskbb ELF decays
faster after the TT. More importantly, there is a definite
threshold, the diskbb ELF must be below ∼0.0001 for
the compact jets to form during the outburst decays.

The TT is often associated with an increase in the
power-law flux as it can be seen in Fig. 4, right. The
power-law ELFs are more scattered compared to those of
diskbb ELF. The most important point about the evolu-
tion of power-law ELFs is the fact that the compact jets

almost always form after the power-law ELF peaks. The
lag between the peaks of power-law ELF and compact
jet formation is often days.

The transition from an intermediate state to the hard
state is evident in all sources as a fast hardening of
the photon index as shown in Fig. 5 blue points in
the color version. Excluding XTE J1720−318 and
XTE J1752−223, there is a threshold also in the power-
law index of around 1.8. This result is spectral model
dependent, and rather than providing a quantitative
threshold, a better statement would be that the compact
jets form when the source is close to being at its hardest
in the X-ray band during outburst decay. Moreover, this
plot also shows the clear softening of some of the sources
at the end of outbursts as discussed before by Tomsick &
Kaaret (2001); Corbel, Tomsick & Kaaret (2006); Dinçer
et al. (2008); Wu & Gu (2008); Sobolewska et al. (2011).

4. DISCUSSION

4.1. NIR flares, radio detections and jet formation

The jet, which is quenched in the soft state, turns on
during outburst decay. The X-ray spectral and temporal
changes may allow us to understand the necessary envi-
ronment and timescale for the jets to be launched and
to evolve. We have very good coverage in the NIR; how-
ever, our radio coverage is sparse. The SEDs prepared
during the flares for 4U 1543−47 and XTE J1550−564
are consistent with emission from compact jets (Kalemci
et al. 2005; Russell et al. 2010). There is a radio de-
tection of 4U 1543−47 with an inverted radio spectrum
during the flare. The SEDs prepared from the data of
GX 339−4 during the flares are harder to interpret be-
cause the NIR-optical part of the SEDs are rather flat
(Buxton et al. 2012; Dinçer et al. 2013) which require
extra emission components in the jet. For the 2005 and
2007 outburst decays of GX 339−4, a compact jet is de-
tected close to the peak of the NIR flare. In the case of
the best radio and NIR coverage, GX 339−4 in 2011, we
observe that there are radio detections earlier than the
NIR peak, with an optically thin spectrum, and the ra-
dio spectrum becomes optically thick after the NIR flare
starts. There is no radio observation during the flare
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Figure 3. The evolution of 3-200 keV Eddington Luminosity Fraction (ELF) of all sources investigated in this work. The distances and
black hole masses that are used to calculate luminosities are shown in Table 1. For XTE J1752−223, and GRO J1655−40, the luminosities
are calculated twice for this graph only; the smaller black points at lower Eddington Luminosities are from distance measurements of
Shaposhnikov et al. (2010) for XTE J1752−223, and Foellmi et al. (2006) for GRO J1655−40. The errors in the luminosities are large for
some systems due to large errors in distance. The errors are not shown for clarity, but incorporated in the measurements and the discussion.
A color version of this figure is available in the online version.
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Figure 4. The evolution of 3-200 keV disk blackbody (left), and power-law (right) ELF of all sources investigated in this work. A color
version of this figure is available in the online version.

of XTE J1550−564, but given its SED, the morphol-
ogy of the NIR flare compared to those of GX 339−4
and 4U 1543−47, and the time it starts compared to
the timing transition (see Fig. 1)) it is reasonable to as-
sume that NIR flares of 4U 1543−47, GX 339−4 and
XTE J1550−564 all have the same origin, and they are
all related to compact jets.

For GX 339−4, XTE J1550−564 and 4U 1543−47, the
delay between the TT and the start of the NIR peak
is 10-20 days (see Fig. 1). For those sources, the NIR
peak occurs 5-15 days after the index transition. When
we investigate the decays with radio coverage, there are
cases with radio detections earlier than even the tim-
ing transition. However, the first radio detection does
not always mean the presence of a compact jet with a
flat/inverted radio spectrum (see Table 2). The first two
radio observations of XTE J1720−318 are taken at a sin-
gle frequency, therefore we do not know if it is optically
thin or thick. The radio spectra of H1743−322 for all
outburst decays evolve from optically thin to optically
thick (see Fig. 2).

In fact, with the strict definition of presence of flat
to inverted radio spectrum for the radio transition, all
sources with both NIR and radio coverage show compact
jet “after” the NIR flare start. The radio behavior of all
sources is consistent with what is observed in GX 339−4
in 2011, as the X-ray spectrum gets harder, a detection or
increase in radio flux is observed first. When the source is
close to its hardest level, the NIR flux rises (for the cases
with NIR coverage), and the radio spectrum becomes flat
or inverted (Corbel et al. 2013a). These results indicate

that if the NIR flare has a jet origin, it corresponds to a
change in properties of the jet (becoming compact, and
therefore, optically thick to its own radio emission) rather
than indicating the time of the jet launch. A similar
explanation is also given by Miller-Jones et al. (2012).

The optically thin radio emission may be coming from
a jet that was launched earlier interacting with the in-
terstellar medium, or there may be an outflow which is
not collimated enough to produce a flat to inverted radio
spectrum.

The case of XTE J1752−223 warrants a separate dis-
cussion. As shown in Chun et al. (2013), the I and H
band SMARTS light curves indicate three possible flares.
When the compact core is detected with the VLBI (∼
29 days after the TT), a small flare (flare 2 in Chun
et al. 2013) in the I band is in progress. We note that
the ATCA radio spectrum is still optically thin at this
time. The ATCA radio spectrum becomes consistent
with emission from a compact jet during a larger flare
(flare 3 in Chun et al. 2013) observed both in the I
and the H bands ∼ 50 days after the TT (Chun et al.
2013). If flare 2 in the I band is similar to flares seen
in GX 339−4 and 4U 1543−47, then the scenario dis-
cussed above is also valid for XTE J1752−223. Only for
the case that flare 3 is similar to flares seen in GX 339−4
and 4U 1543−47, and flare 2 is due to some other process,
we must conclude that the optically thick jet is launched
tens of days before the NIR flare, and therefore the sce-
nario that the NIR flare corresponds to the transition
of optically thin to optically thick radio emission is not
valid for all sources.
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Figure 5. The evolution of power law photon indices (Γ) for all
sources investigated in this work. A color version of this figure is
available in the online version.

4.2. Timescales of transitions

The time between the TT (sudden increase in the rms
amplitude of variability) and the IT (start of the hard-
ening) is usually between 3-7 days. It is well known that
the increase in the variability rms is linked to the pres-
ence and strength of a hot electron corona (even though
the origin of variability pattern may still be the opti-
cally thin disk, Uttley et al. 2011). The increase in the
power-law flux during this transition supports the con-
nection between the corona and timing (see Fig. 4, right).
This increase in flux from the corona does not immedi-
ately result in the change in the photon-index (see Fig. 5,
Kalemci et al. 2004).

In our previous work, we claimed that, to form the
jet, a strong corona must be formed first (Kalemci et al.
2005, 2006a) based on limited data and theoretical argu-
ments (Meier 2001; Meier, Koide & Uchida 2001). Here,
we try to determine the timescale between the estab-
lishment of the strong corona and the CJT. We chose
the date at which the power-law ELF peaks as a safe
upper limit for the presence of a strong corona. The
delay timescales between the times for which the power-
law ELF peaks and the CJT are between 0-12 days (see
Fig. 6). As stated in Fragile, Wilson & Rodriguez (2012),
three ingredients are required to launch jets: accretion
of large scale poloidal magnetic fields, collimation, and
mass loading/energy conversion to electromagnetic emis-
sion. The simulations in general also show that once the
poloidal magnetic field is transferred, the outflows are
seen on a dynamical timescale (see Meier, D. L. 2012, and
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Figure 6. Zoomed region of the evolution of power-law ELF
shown in Fig. 4, right. The arrows are from the peak ELF to the
first observation after CJT to show the timescales. Only sources
with well determined transition times are shown. A color version
of this figure is available in the online version.

references therein), which is obviously multiple orders of
magnitude shorter than the delay that we determined for
most of the sources in Fig. 6.

Corbel et al. (2013a) discuss the delay between the op-
tically thin radio detection (which occurs after the IT,
but before the power-law ELF peaks) and the NIR rise
in GX 339−4 in terms of a timescale for building up tur-
bulence and strong shocks in the magnetized jet plasma.
Initially, the plasma density and therefore the optical
depth is low, producing optically thin radio emission. In
this scenario, an increase in the optical depth and/or an
increase in particle acceleration efficiency lead to NIR
emission from the jet base turning on.

According to the theoretical work of Falcke, Körding
& Markoff (2004) and Heinz & Sunyaev (2003), the jet
power is positively correlated with the spectral break be-
tween the flat and the optically thin part of the jet SED.
As the jet power increases, the spectral break shifts to
higher frequencies, allowing for the detection of the NIR
flux (Coriat et al. 2009; Miller-Jones et al. 2012; Russell
et al. 2013a). In this case, the delay of the NIR peak
with respect to the other changes in X-ray properties
depends on the evolution timescale of the SED break.
Such an evolution of the break frequency is observed for
MAXI J1836−194 during the decay of a failed outburst
(Russell et al. 2013b). However, in that case, a compact
jet with a flat to inverted spectrum never disappeared
(since the source never entered the soft state) and is
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present even before the NIR rise. It is difficult to test
such a scenario with the data we have as none of the
three GX 339−4 outburst decays with simultaneous NIR
and radio data show flat to inverted radio spectrum be-
fore the NIR flare.

If the increase in the NIR flux is due to the formation
of a compact jet, then the delay between the transition
in timing and the compact jet formation may also be
due to the transport of poloidal magnetic field from a
very large distance in viscous time scales. The poloidal
magnetic field would increase particle acceleration effi-
ciency. It is also claimed that it is easier to transport
magnetic fields if the disk is geometrically thick (Beck-
with, Hawley & Krolik 2009). On the other hand, there
are also reports claiming that the thickness of the disk
is not an important factor in the transport of magnetic
fields and that thin disks would carry them as efficiently
(McKinney, Tchekhovskoy & Blandford 2012).

This raises another question: what is the reservoir of
the poloidal fields that launch the jet? The fields can
be generated through dynamo mechanisms at the outer
parts of the disk, but it is also possible that the source is
the secondary star (McKinney, Tchekhovskoy & Bland-
ford 2012). Then, the transport timescale could still be
a plausible explanation if the efficiency of transport is
accelerated by irradiation of the secondary star by hard
X-rays after the TT.

4.3. The optically thick, geometrically thin disk

The answer to the puzzle of what sets the timescale for
the compact jet production may be found in the evolu-
tion of the optically thick disk. Fig. 4 clearly indicates a
threshold for the CJT at 10−4 ELF. This threshold was
first reported in Kalemci et al. (2006a) based on only a
couple of sources. With the new additions of sources and
outbursts, it has become much clearer. To be able to ob-
serve the compact jet, the disk flux in the RXTE band
must be lower than a threshold value while the corona
has already formed as seen by the evolution of the power-
law flux.

The disk luminosity may be affecting the disk height,
and therefore the collimation of the jet directly. How-
ever, it is shown by Fragile, Wilson & Rodriguez (2012)
that the disk scale height is not an important factor in
the collimation of the jet, nor does it affect the jet power.
In their simulations, the collimation is provided by the
corona. Alternatively, the disk height could affect the
transport properties of the magnetic field, but as dis-
cussed earlier, there is no consensus on the role of disk
thickness in the efficiency of magnetic field transport.

The launch of compact jet may require a truncated
disk. There is evidence of disk truncation at very low
ELF for GX 339−4 (0.0014 ELF for total flux, Tomsick
et al. 2009). However, there is evidence of the disk being
close to the last stable orbit when the jets are present
for GX 339−4 (Tomsick et al. 2008; Allured et al. 2013).
A recent, detailed study by Miller et al. (2012) shows
not only that the jets are present with the disk being
close to the last stable orbit, but also that the jet flux
is not related to the inner disk radius for Cyg X-1. We
note that the inner disk structure could be formed by
the coronal condensation, and at those luminosity levels
the accretion can still be dominated by a coronal flow
(Meyer-Hofmeister, Liu & Meyer 2012).

If we put these pieces of information together, a pic-
ture emerges that can explain the relation between the
NIR evolution, radio emission and jets. X-ray spectral
evidence in many black hole transients indicate that the
corona is very small and/or patchy in the soft state, and
the jet emission is quenched. After the TT, there is
an increase in power law flux, indicating formation of a
stronger corona. Weak, optically thin outflows may form
at this time as observed in some sources, and as predicted
by simulations. On the other hand, in this work, we show
that even when the coronal emission totally dominates
the accretion flow, as indicated by the maximum power
law ELF, the compact jets may not form. As the disk
flux decreases below a threshold, the corona fills a larger
area. Once a large corona is formed, it produces very
hard X-ray emission through Comptonization (of either
the disk photons or soft photons that are created by syn-
chrotron radiation at the base of the jet (Markoff, Nowak
& Wilms 2005)) and, at the same time, very effectively
collimates the jet. At this point, the optical depth of
the corona is high enough for the radio spectrum to be
optically thick, and the jet base efficiently produces NIR
photons. The change in the properties of the corona may
also aid in transport of magnetic fields.

4.4. Comparison with the outburst rise

The fact that there is a threshold diskbb ELF for the
formation of the compact jet does not mean that the
jets will disappear when the diskbb ELF rises above the
threshold. The hysteretic behavior of the state transi-
tions in GBHTs is very well known. During the rise, the
transitions take place at higher luminosities than during
the decay. As expected, the compact jets observed during
the outburst rise persist within much larger disk black-
body ELFs (Joinet et al. 2005; Cadolle Bel et al. 2011).
As far as we know, there has not been a systematic study
of the relation of the disk flux to the NIR behavior during
the outburst rise. However, Homan et al. (2005) inves-
tigated the 2005 outburst rise of GX 339−4. The NIR
light curve shows a flare in the initial hard state that rolls
off slightly around MJD 52,400, and then sharply drops
off 4 days later. This drop-off is accompanied by a rise in
the disk flux by almost two orders of magnitude. Cadolle
Bel et al. (2011) analyzed multiwavelength data from the
rise of the 2010 outburst of GX 339−4. The disk behav-
ior is similar to 2005: The i, V and R band magnitudes
show a sharp decrease on MJD 55,294. The optical flux
continued to drop over 6 days while the disk flux rises
sharply. It would not be surprising if the large increase
in the disk flux changes the magnetic field structure of
the environment and quenches the compact jets. The
observations during the rise also show the importance
of the emission from the optically thick disk in terms
of determining the behavior of the compact jet. There
is, though, a major difference between the rise and de-
cay behavior of the disk in addition to the different ELF
thresholds. For GX 339−4 during the 2010 rise, the jet
persists when the ratio of the disk flux to overall flux is
around 20%. When we place the observations with the
compact jet in the hardness-intensity diagrams (Fender,
Belloni & Gallo 2004), it can be clearly seen that the
compact jets persist to much lower hardness levels in the
rise compared to the decay (Fender, Homan & Belloni
2009; Dunn et al. 2010). Therefore, forming and sustain-
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ing compact jets have different requirements in terms of
X-ray emission from the disk.

4.5. Alternative explanations for the NIR peak

Synchrotron emission from a hot accretion flow (Veled-
ina, Vurm & Poutanen 2011; Veledina, Poutanen & Vurm
2013) is a viable alternative to the scenario we have been
considering. In this work, we discuss the case of syn-
chrotron emission from an optically thick compact jet
for the source of NIR photons during the peak. A hot
accretion flow model assumes that synchrotron emission
from the corona is caused mostly by non-thermal elec-
trons. The flat NIR-optical SEDs observed for GX 339−4
(Dinçer et al. 2012; Gandhi et al. 2011) are consistent
with the hot accretion flow scenario. The coincidence
of optically thin to optically thick radio transition with
the NIR increase in 2011 can also be explained within
this model as the presence of a large corona could ex-
plain both the enhanced synchrotron emission from the
hot accretion flow, and enhanced collimation of the jet.
However, we show in this work that the CJT occurs as
much as 12 days after the power-law ELF peaks. If
the strongest power-law ELF is an indication of a large
corona filling the inner parts of the accretion disk, the
delay of the NIR peak is difficult to understand in the
hot accretion flow model. Moreover, this model cannot
explain the SEDs with steep slopes in the NIR-optical re-
gion after the break seen in 4U 1543−47 (Kalemci et al.
2005) and MAXI J1836−194 (Russell et al. 2013b).

Finally, irradiation related emission from the outer
parts of the disk or from the secondary star should
be considered for the secondary NIR rise. According
to Homan et al. (2005), the contribution of the sec-
ondary star is negligible for GX 339−4 during outbursts.
It is also shown in Buxton et al. (2012) and Dinçer
et al. (2012) that the optical-infrared part of the SED of
GX 339−4 is consistent with viscously heated disk emis-
sion in the soft state, but as the NIR flux rises it becomes
redder. Coriat et al. (2009) claims that the delay between
the transition to the hard state and the rise of the NIR
rules out the irradiation scenario. However, geometrical
effects such as the location of the cooling front and the
height of the corona must also be taken into account be-
fore reaching strong conclusions. As shown in Ertan &
Alpar (2002), the parts of the accretion disk that remain
inside the cooling front can become geometrically thicker
due to heating from the central source and efficient dis-
sipation with the hot-state viscosity. As a result, during
the early, softer part of the decay, the outer disk beyond
the cooling front can remain shielded from the X-rays
by the hot inner disk. As the source moves towards the
hard state, the corona becomes larger while also growing
in scale height with respect to the disk. After the corona
reaches a critical height, X-rays start irradiating the out-
ermost part of the initially shaded cold disk. This would
be well after the transition in timing (during which the
power-law flux increases). This scenario could explain
the timing of the flares, however, eventually the newly
irradiated regions of the disk will accrete and increase
the soft X-ray flux. Among the sample we investigated,
only XTE J1752−223 showed a secondary brightening in
X-rays. The irradiation+cooling flow scenario would not
work for GX 339−4, XTE J1550−564, and 4U 1543−47
flares we study here as there are no associated X-ray
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Figure 7. Photon index (Γ) vs. power-law ELF for sources
that clearly show softening at very low luminosities. The coloring
scheme is the same as previous plots. A color version of this figure
is available in the online version.

peak after the NIR flare. A detailed study is underway
to investigate whether this model could explain both the
SED evolution and relative timing of optical and X-ray
peaks in sources for which both peaks are observed.

We also must note that if the reservoir of the poloidal
magnetic fields is the secondary star, or the outer parts of
the accretion disk, the CJT timescales may be explained
by an increased efficiency of magnetic field transport due
to the irradiation of the outer parts of the disk or the sec-
ondary star from a relatively thicker corona (power-law
flux increase during the TT). Then, it would take 5-20
days for the ordered magnetic fields to be transported to
the inner parts of the disk. This timescale would depend
on the size of the disk and the viscosity. If this is the case,
the viscosity should vary by a factor of two from out-
burst to outburst of GX 339−4 (see Table 2). Also, the
binary separations of GX 339−4, GRO J1655−40, and
XTE J1550−564 are similar (Table 1), but the timescale
of CJT for GRO J1655−40 is much smaller than those
of GX 339−4, and XTE J1550−564 (Table 2).

4.6. X-ray softening at the end of outbursts

Three sources show clear softening at low luminosities
during the decay, 4U 1543−47 (Kalemci et al. 2005; Wu &
Gu 2008; Dinçer et al. 2008), XTE J1550−564 (Kalemci
et al. 2003; Wu & Gu 2008), and GRO J1655−40 (Dinçer
et al. 2008, Sobolewska et al. 2011, but also see Homan
et al. 2013. On the other hand, our analysis do not show
any clear softening for GX 339−4, XTE J1752−223, or
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H1743−322 in any of their outbursts for the date range
investigated in this paper. This is notable because the
presence of softening was claimed by Sobolewska et al.
(2011) for GX 339−4 in 2003 and 2005 outburst decay.
However, they used a Comptonization model rather than
a simple power-law to fit the data. Also, their data anal-
ysis did not take into account the Galactic ridge emission
(M. Sobolewska, private comm.), which could soften the
spectrum at low flux levels. We note that fits with a
simple power-law model show softening for the 2007 out-
burst of GX 339−4 ∼130 days after the NIR rise (Dinçer
et al. 2008). Concentrating on the cases where there is
clear softening, we observe that for GRO J1655−40, the
softening begins almost as soon as the source is detected
in radio (see Fig. 2). XTE J1550−564 starts softening at
the peak of the NIR rise, and 4U 1543−47 softens well
after (6-7 days) the NIR peak, as the NIR flux was de-
caying (see Fig. 1). They all soften between 0.001-0.01
power-law ELF as seen in Fig. 7. The softening can be
explained both in terms of radiatively inefficient flows or
non-thermal jets. For detailed discussions of these alter-
natives, see Wu & Gu (2008); Sobolewska et al. (2011);
Russell et al. (2010). We would like to emphasize an im-
portant finding: the three cases with the clear softening
are the ones with the fastest drop in the power-law flux
(see Fig. 4, right). This is consistent with the scenario
described in Russell et al. (2010). When the compact
jet first forms, the X-rays it produced by synchrotron
mechanism may be much less compared to the X-rays
produced through thermal Comptonization. Since, for
these sources, the hard Comptonization flux drops much
quicker, softer X-rays from jet synchrotron may result
in a steeper photon index at the end of outburst decays.
For GX 339−4, the decay of Comptonized power-law flux
is slow, and the effect cannot be seen within 30-40 days
after the transition. In fact, for the 2003, 2005 and 2011
outbursts, the NIR flux also decreases within 80 days,
but in 2007, the NIR flux stays constant for over 100
days, and the softening in the X-rays is observed as the
X-ray flux decreases 130 days after the start of the NIR
rise (see Dinçer et al. 2008, for the evolution of the NIR
flux and the power-law flux). The drop in X-ray flux
is also fast for H1743−322 in 2003 and 2008. However,
the Galactic Ridge strongly affects the RXTE spectra of
this source at low luminosity levels, and the correspond-
ing errors on the photon index make it difficult to detect
any indication of softening.

5. SUMMARY AND CONCLUSIONS

We study the evolution of X-ray spectral properties of
all black hole transients during outburst decay for which
multiwavelength coverage is also available. We deter-
mine the times of several state transitions related to the
X-ray and NIR emission: the timing transition (a sudden
increase in the rms amplitude of variability, which is ac-
companied by an increase in power-law flux), the index
transition (a slow hardening of the X-ray photon index),
and the compact jet transition (a sudden increase in the
NIR flux and/or detection of a flat to inverted radio spec-
trum). The important results of this study are:

• State transitions during the decay occur at similar
Eddington Luminosity Fractions of a few percent
(Fig. 3; see also Maccarone 2003).

• The timescale between transitions is typically be-
tween 2-10 days (Table 2), which is too long when
compared to the jet formation timescales in numer-
ical simulations. The presence of a corona is not
enough to launch compact jets (Fig. 6).

• The compact jets are observed when the spectrum
is very hard (Fig. 5), but optically thin outflows
may start at softer X-ray photon indices.

• There is a strict threshold in the optically thick
disk emission, the Eddington Luminosity Fraction
of the disk must be smaller than 0.0001 to observe
compact jets (Fig. 4).

• The sources that show softening at low luminosi-
ties are those for which the X-ray flux drops faster.
This shows that a secondary, softer component may
be affecting the emission for these sources (Fig. 7).

To explain these results we suggest a model that in-
cludes a small scale height corona along with the disk,
which allows outflows with optically thin emission be-
fore compact, steady jets are observed. In this picture,
a large scale height corona develops as the disk emis-
sion decreases, providing the collimation for the steady
compact jet. We provide an alternative explanation to
the timescale of jet formation in terms of transport of
magnetic fields from the outer parts of the disk, and also
discuss two alternative explanations for the multiwave-
length emission: hot inner accretion flows and irradia-
tion.
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thanks Chris Fragile, David Meier, Rob Fender, Ünal
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APPENDIX

DETERMINATION OF TRANSITION TIMES

For each source, the specific transition times (timing, index and NIR/radio transition) are obtained as follows. First,
we plot the evolution of all spectral and temporal parameters that we investigate during the outburst decay. We
provide 4U 1543−47 during 2003 outburst case as an example in Figure 8.

Timing transition (TT)

To determine the time of TT, we start with the evolution of PSDs. For many outbursts (GX 339−4 in 2005, 2007,
2011, 4U 1543−47, GRO J1655−40 in 2005, H1743−322 in 2003, 2008, and XTE J1720−318), the identification of the
TT is straightforward. It occurs when, for two consecutive observations, the PSD in the earlier observation does not
show any broad band features with the rms amplitude being less than 5%, while the later observation shows broad
band noise with an rms amplitude of variability greater than 8% (see the case of 4U 1543−47, Figure 8 as an example).
We define the TT to be the temporal midpoint between these two observations. These sources also show a sudden
increase in the power-law flux during this transition as discussed in Kalemci et al. (2004). The detailed evolution of
all PSDs for all sources is provided in the following paper (Dinçer et al. 2013).

For the rest of the outburst decays we investigate, the identification of the TT is not as straightforward. Along with
the evolution of the PSDs, we investigate evolution of the spectral parameters and the hardness intensity diagram and
cite results from previous work on these sources. Below, we explain each case and justification of our TTs.

GX 339−4 in 2003: A detailed analysis of the timing properties of this source is given in Belloni et al. (2005).
During the decay, the source enters the hard-intermediate state from the soft state on ∼ MJD 52,695. Instead of
getting harder monotonically (moving to right in the hardness-intensity diagram), the source goes back and forth in
the hardness-intensity diagram, softens, go back to the soft state and then hardens again around MJD 52,718. Starting
from this date, the rms amplitude also increases monotonically (Dinçer et al. 2013); thus, we use MJD 52,717.8 as our
TT date.

XTE J1550−564 in 2001: There are various features in the PSDs of this outburst throughout the hardness intensity
diagram (see Rodriguez et al. 2004, for the evolution of quasi-periodic oscillations). The earlier part of the decay has
PSDs with B type QPOs indicating a soft-intermediate state. Investigating the evolution of PSDs, we recognized that
the QPOs disappear at around MJD 51,673, and the power-law flux increases at the same time. Therefore, we chose
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Figure 8. Left: Evolution of temporal and spectral parameters of 4U 1543−47 during the 2003 outburst decay: a) rms amplitude of
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the first observation. Color definitions are given in § 3. Right: PSD of observations at MJD 52,473.2 (Top) and at 52,474.2 (bottom). The
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hardening, and during hardening are indicated by the dashed lines. The slope of the fit for the final 9 observations (dotted lines) clearly
indicates softening. Right: Similar fits for the evolution of photon indices of GX 339−4 during the 2003 outburst decay. No evidence of
softening.

the TT as MJD 51,674.
H1743−322 in 2009: Here, we directly utilized results of Motta, Muñoz-Darias & Belloni (2010), which provide an

in-depth analysis of spectral and temporal evolution. Since the shape of the PSD changes, a C-type quasi-periodic
oscillation appears and the rms amplitude of variability increases for the observation on MJD 55,016, we set the TT
at MJD 55014.7.

Index transition (IT)

As seen in Figure 8 (left) for one source, and in Figure 5 for all cases, GBHTs during outburst decay harden quite
rapidly from photon index ∼2 to ∼1.6 over a timescale of ∼10 days. To find the IT time, defined as the start of the
hardening, we apply two linear fits, one to the group of observations before the apparent drop, and another one to the
indices over the time they are dropping (see Figure 9 for two examples). The time corresponding to the intersection
of these two lines provides the time of the IT.

Using the data at the very ends of the outbursts, a third linear fit to the photon index vs. time data of all outburst
decays is used to determine if there is softening. The slope of the line is used as our diagnostic. For most of the sources,
the slopes are consistent with being zero within 1σ; hence, we conclude that there is no softening for these sources
over the range of luminosities being investigated (see Figure 9, right, for an example). For three sources (4U 1543−47,
XTE J1550−564, GRO J1655−40), the fits result in positive slopes (see Figure 9, left, for an example).

NIR transition

To find the time of the NIR transition, we first convert NIR magnitudes into relative fluxes (compared to the first
observation in the dataset). We choose points before and after the flare (gray solid circles in Figure 10), and apply an
exponential fit. These points determine the baseline which has an origin other than the jet, such as the outer parts of
the disk or the secondary star (shown with the dashed line in Figure 10). We then choose points that represent the
rapid rise (excluding the top of the flare, black solid circles in Figure 10), and fit these points with a linear function
over the baseline (dotted line in Figure 10). The start time is defined as the date that the linear fit intersects zero.
This is the same method used in Kalemci et al. (2005); Dinçer et al. (2012); Chun et al. (2013).

We note that some arbitrariness exists in this method because the points included in the flare and baseline fits are
chosen by eye. Also, as discussed in Buxton et al. (2012), the baseline before and after the flare might have an offset,
and a single exponential may not fit all points. Despite these potential problems in the method, trying different groups
of points for the baseline, omitting the part of the baseline after the flare (e.g., for GX 339−4 in 2007, the NIR peak
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Figure 10. Left: Evolution of the relative H-band NIR fluxes for 4U 1543−47 during the 2002 outburst decay (left), and GX 339−4
during the 2003 outburst decay (right). For both cases, the gray solid circles represent the baseline, and the black solid circles are the
observations that we fit for the NIR rise. The dashed, dotted and the solid lines represent the fit to the baseline, to the NIR rise over the
baseline, and to the overall fit; baseline+rise, respectively.

does not decay for more than 100 days; therefore, we only used the data before the rise), or using slightly different
groups of points for the rise changes the start time at most by a day.

Radio Transition

Here, we provide the details and references for the radio transition times and first radio detections for each source
and outburst (see § 2.3, and Table 2).

GX 339−4: For the 2005 outburst, the first radio detection during the outburst decay on MJD 53,481.7 shows an
inverted radio spectrum (Corbel et al. 2013b). Similarly, the radio spectrum is flat on MJD 54,251.7, at the time of
first radio detection during the 2007 decay (Corbel et al. 2013b). Therefore the radio transitions for GX 339−4 in
2005 and 2007 are also the first time the sources are detected after the TT. For the 2011 decay, the evolution from
an optically thin to an optically thick radio spectrum is observed (Corbel et al. 2013a). The first radio detection
is on MJD 55,598.9, and the first optically thick radio detection is on MJD 55,610.1 which correspond to the radio
transition.

4U 1543−47: The first detection in radio is by MOST on MJD 52,490 at a single frequency. The first multi-frequency
radio observation with ATCA is on MJD 52,493 for which the radio spectrum is slightly inverted.

GRO J1655−40: On MJD 53,630 and 53,631, the source is not detected with a 4.86 GHz flux density upper limit of
0.3 mJy and a 8.46 GHz flux density of 0.4 mJy. The first detection in radio on MJD 53,634 showed a flat spectrum
with α = 0.27± 0.76.

XTE J1752−223: The compact core of this source is detected with the VLBI on MJD 55,311.5 (Yang et al. 2011).
We set this date as the radio transition since we associate this transition to the presence of a compact jet. Since
there are no earlier VLBI observations after the TT, this date should be taken as an upper limit as indicated in
Table 2. Earlier radio detections exist even at the time of the TT with negative spectral indices indicating optically
thin emission (Chun et al. 2013; Brocksopp et al. 2013).

H1743−322:
2003: The first detection in radio is with the VLA is on MJD 53,940 with α = −0.73 ± 0.72. We set the radio

transition at the second detection, on MJD 53,948, where the index is 0.82± 0.87.
2008: There are detections of this source with the VLA in radio even before the TT, yet the radio spectra are clearly

optically thin (see Fig. 2, and Jonker et al. 2010). The single ATCA observation on MJD 54,493, about 5.5 days
after the TT, provides an upper limit of 0.15 mJy at 8.46 GHz (Kalemci, Corbel & Tzioumis 2008). The first radio
detection after the upper limit is on MJD 54,499.7. The radio spectral index becomes consistent with flat within 1 σ
on MJD 54,502.6, and stays flat afterwards (Jonker et al. 2010). Therefore, we place the radio transition at this date.

2009: Miller-Jones et al. (2012) provides information from all the VLA and ATCA radio data of this source for the
entire outburst, including a detailed discussion of the jet turn on during the decay. Here, we only show the 4.9 and 8.4
GHz data from VLA along with the evolution of the spectral index in Fig. 2. Radio emission is detected throughout
the soft state with ATCA at a single frequency of 8.4 GHz. The first observation that satisfies our criteria for the
radio transition is on MJD 55,026.2, which is also indicated as a transition from the hard intermediate state to low
hard state in Miller-Jones et al. (2012).

XTE J1720−318: The first radio detection of the source during the decay is on MJD 52,728.6, about 2 days after
the TT, at a single frequency of 4.86 GHz (Brocksopp et al. 2005). The second detection is around 9 days after the
TT, again at 4.86 GHz. The first multi-frequency observation is on MJD 52,755.5, 29 days after the TT (see Fig. 2).
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The radio spectrum is flat at this date, consistent with emission from a compact jet.
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