261 research outputs found

    Climate Change and the American West

    Get PDF
    Global climate change is a topic that has garnered much attention in recent decades from both scientific and policy arenas. This article provides a synopsis of the current state of the science, and reviews the challenges of climate change in scientific, policy, and public arenas. Secondly, we provide a review of observed changes in global climate with a more detailed view of climatic changes and their subsequent impacts on terrestrial systems across the American West. We specifically highlight studies published since 2014 that provide current insights to the collection of science on climate change; its impacts on the American West; and complement national and international assessment reports

    Western Fires are Burning Higher in the Mountains at Unprecedented Rates: It’s a Clear Sign of Climate Change

    Get PDF
    The Western U.S. appears headed for another dangerous fire season, and a new study shows that even high mountain areas once considered too wet to burn are at increasing risk as the climate warms. Nearly two-thirds of the U.S. West is in severe to exceptional drought right now, including large parts of the Rocky Mountains, Cascades and Sierra Nevada. The situation is so severe that the Colorado River basin is on the verge of its first official water shortage declaration, and forecasts suggest another hot, dry summer is on the way. Warm and dry conditions like these are a recipe for wildfire disaster

    The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984–2008: the role of temporal scale

    Get PDF
    The relationship between large fire occurrence and drought has important implications for fire prediction under current and future climates. This study’s primary objective was to evaluate correlations between drought and fire-danger- rating indices representing short- and long-term drought, to determine which had the strongest relationships with large fire occurrence at the scale of the western United States during the years 1984-2008. We combined 4-8-km gridded drought and fire-danger-rating indices with information on fires greater than 404.7 ha (1000 acres). To account for differences in indices across climate and vegetation assemblages, indices were converted to percentile conditions for each pixel. Correlations between area burned and short-term indices Energy Release Component and monthly precipitation percentile were strong (R2=0.92 and 0.89), as were correlations between number of fires and these indices (R2=0.94 and 0.93). As the period of time tabulated by indices lengthened, correlations with fire occurrence weakened: Palmer Drought Severity Index and 24-month Standardised Precipitation Index percentile showed weak correlations with area burned (R2= 0.25 and -0.01) and number of large fires (R2=0.3 and 0.01). These results indicate associations between short-term indices and moisture content of dead fuels, the primary carriers of surface fire

    Improved Bias Correction Techniques for Hydrological Simulations of Climate Change

    Get PDF
    Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile matching (EDCDFm) bias correction preserves GCM changes in mean daily maximum temperature but not precipitation. An extension to EDCDFm termed PresRat is introduced, which generally preserves the GCM changes in mean precipitation. Another problem is that GCMs can have difficulty simulating variance as a function of frequency. To address this, a frequency-dependent bias correction method is introduced that is twice as effective as standard bias correction in reducing errors in the models’ simulation of variance as a function of frequency, and it does so without making any locations worse, unlike standard bias correction. Last, a preconditioning technique is introduced that improves the simulation of the annual cycle while still allowing the bias correction to take account of an entire season’s values at once

    Natural and Managed Watersheds Show Similar Responses to Recent Climate Change

    Get PDF
    Changes in climate are driving an intensification of the hydrologic cycle and leading to alterations of natural streamflow regimes. Human disturbances such as dams, land-cover change, and water diversions are thought to obscure climate signals in hydrologic systems. As a result, most studies of changing hydroclimatic conditions are limited to areas with natural streamflow. Here, we compare trends in observed streamflow from natural and human-modified watersheds in the United States and Canada for the 1981–2015 water years to evaluate whether comparable responses to climate change are present in both systems. We find that patterns and magnitudes of trends in median daily streamflow, daily streamflow variability, and daily extremes in human-modified watersheds are similar to those from nearby natural watersheds. Streamflow in both systems show negative trends throughout the southern and western United States and positive trends throughout the northeastern United States, the northern Great Plains, and southern prairies of Canada. The trends in both natural and human-modified watersheds are linked to local trends in precipitation and reference evapotranspiration, demonstrating that water management and land-cover change have not substantially altered the effects of climate change on human-modified watersheds compared with nearby natural watersheds

    Wildland fire deficit and surplus in the western United States, 1984–2012

    Get PDF
    Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a ‘‘fire deficit’’ or ‘‘fire surplus’’, respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012.We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a function of several climatic variables from reference areas with low human influence; the relationship between climate and fire is strong in these areas. We then quantified the degree of fire deficit or surplus for all areas of the western US as the difference between expected (as predicted with the model) and observed area burned from 1984 to 2012. Results indicate that many forested areas in the western US experienced a fire deficit from 1984 to 2012, likely due to fire exclusion by human activities. We also found that large expanses of non-forested regions experienced a fire surplus, presumably due to introduced annual grasses and the prevalence of anthropogenic ignitions. The heterogeneity in patterns of fire deficit and surplus among ecoregions emphasizes fundamentally different ecosystem sensitivities to human influences and suggests that largescale adaptation and mitigation strategies will be necessary in order to restore and maintain resilient, healthy, and naturally functioning ecosystems

    Modeling Current and Future Potential Distributions of Milkweeds and the Monarch Butterfly in Idaho

    Get PDF
    Monarch butterflies (Danaus plexippus) are widespread in North America but have experienced large rangewide declines. Causes of recent declines likely involve multiple biotic and abiotic stressors including climate change and loss and degradation of native milkweed (Asclepias spp.), monarchs' obligate larval host plant. Recent broad-scale modeling efforts suggest milkweed and monarch distributions in the eastern United States will expand northward during summer months while fine-scale modeling of western population overwintering sites in California indicate shifts inland and upward in elevation. However, species' response to climate measures varies at sub-regional scales across its range and both the impacts of climate change and potential adaptation measures may be sensitive to the spatial scale of climate data used, particularly in areas of complex topography. Here, we develop fine-scale models of monarch breeding habitat and milkweed distributions in Idaho, an area at the northern extent of the monarch breeding range in North America and important in western overwintering population recruitment. Our models accurately predict current distributions for showy milkweed (A. speciosa), swamp milkweed (A. incarnata), and monarch with AUC (area under the receiver operating characteristic curve) = 0.899, 0.981, and 0.929, respectively. Topographic, geographic, edaphic, and climatic factors all play important roles in determining milkweed and, thus, monarch distributions. In particular, our results suggest that at sub-regional and fine-scales, non-climatic factors such as soil depth, distance to water, and elevation contribute significantly. We further assess changes in potential habitat across Idaho under mid-21st century climate change scenarios and potential management implications of these changing distributions. Models project slight decreases (−1,318 km2) in potential suitable habitat for showy milkweed and significant increases (+5,830 km2) for swamp milkweed. Projected amounts of suitable habitat for monarch are likely to remain roughly stable with expansion nearly equal to contraction under a moderate scenario and slightly greater when under the more severe scenario. Protected areas encompass 8% of current suitable habitat for showy milkweed, 11% for swamp milkweed, and 9% for monarch. Our study shows that suitable habitat for monarchs and/or milkweeds will likely continue to be found in managed areas traditionally seen as priority habitats in Idaho through mid-century

    Wildland fire deficit and surplus in the western United States, 1984–2012

    Get PDF
    Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a ‘‘fire deficit’’ or ‘‘fire surplus’’, respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012.We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a function of several climatic variables from reference areas with low human influence; the relationship between climate and fire is strong in these areas. We then quantified the degree of fire deficit or surplus for all areas of the western US as the difference between expected (as predicted with the model) and observed area burned from 1984 to 2012. Results indicate that many forested areas in the western US experienced a fire deficit from 1984 to 2012, likely due to fire exclusion by human activities. We also found that large expanses of non-forested regions experienced a fire surplus, presumably due to introduced annual grasses and the prevalence of anthropogenic ignitions. The heterogeneity in patterns of fire deficit and surplus among ecoregions emphasizes fundamentally different ecosystem sensitivities to human influences and suggests that largescale adaptation and mitigation strategies will be necessary in order to restore and maintain resilient, healthy, and naturally functioning ecosystems

    Wildland fire deficit and surplus in the western United States, 1984-2012

    Get PDF
    Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a fire deficit or fire surplus, respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012. We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a function of several climatic variables from reference areas with low human influence; the relationship between climate and fire is strong in these areas. We then quantified the degree of fire deficit or surplus for all areas of the western US as the difference between expected (as predicted with the model) and observed area burned from 1984 to 2012. Results indicate that many forested areas in the western US experienced a fire deficit from 1984 to 2012, likely due to fire exclusion by human activities. We also found that large expanses of non-forested regions experienced a fire surplus, presumably due to introduced annual grasses and the prevalence of anthropogenic ignitions. The heterogeneity in patterns of fire deficit and surplus among ecoregions emphasizes fundamentally different ecosystem sensitivities to human influences and suggests that large scale adaptation and mitigation strategies will be necessary in order to restore and maintain resilient, healthy, and naturally functioning ecosystems
    • …
    corecore