11 research outputs found

    Tooth wear: the view of the anthropologist

    Get PDF
    Anthropologists have for many years considered human tooth wear a normal physiological phenomenon where teeth, although worn, remain functional throughout life. Wear was considered pathological only if pulpal exposure or premature tooth loss occurred. In addition, adaptive changes to the stomatognathic system in response to wear have been reported including continual eruption, the widening of the masticatory cycle, remodelling of the temporomandibular joint and the shortening of the dental arches from tooth migration. Comparative studies of many different species have also documented these physiological processes supporting the idea of perpetual change over time. In particular, differential wear between enamel and dentine was considered a physiological process relating to the evolution of the form and function of teeth. Although evidence of attrition and abrasion has been known to exist among hunter-gatherer populations for many thousands of years, the prevalence of erosion in such early populations seems insignificant. In particular, non-carious cervical lesions to date have not been observed within these populations and therefore should be viewed as ‘modern-day’ pathology. Extrapolating this anthropological perspective to the clinical setting has merits, particularly in the prevention of pre-mature unnecessary treatment

    Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus

    Get PDF
    Recent genomic data have revealed multiple interactions between Neanderthals and modern humans, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)-the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution

    Dentine and cementum as sources of nuclear DNA for use in human identification

    No full text
    Teeth are increasingly utilized as a source of nuclear DNA to aid identification of human remains. DNA extraction and the results of genetic analysis from these tissues are extremely variable and to some extent unpredictable. This study examines the availability of nuclear DNA in different areas of the dental hard tissues and explores the extent and nature of the variation within and between individuals. Results of this study indicate that nuclear DNA is available in widely variable quantities in dentine and cementum. This variation exists within teeth and between teeth, even between comparable teeth from the same individual. The quantity of DNA available in dentine is affected by age and dental disease, whereas that in cementum is not. Forensically useful genetic profiles were obtained from as little as 20 mg of tooth powder, thus avoiding the necessity for complete destruction of the tooth. A better understanding of why there is more DNA in one tooth tissue or region compared with another, and of the effects of disease and age, will aid in the selection of which tooth and tissue to sample and will increase the validity of the use of teeth as a source of nuclear DNA for human identification.Denice Higgins, John Kaidonis, Jeremy Austin, Grant Townsend, Helen James and Toby Hughe

    Genome-wide association studies for diabetic macular edema and proliferative diabetic retinopathy

    Get PDF
    Abstract Background Diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) are sight-threatening complications of diabetes mellitus and leading causes of adult-onset blindness worldwide. Genetic risk factors for diabetic retinopathy (DR) have been described previously, but have been difficult to replicate between studies, which have often used composite phenotypes and been conducted in different populations. This study aims to identify genetic risk factors for DME and PDR as separate complications in Australians of European descent with type 2 diabetes. Methods Caucasian Australians with type 2 diabetes were evaluated in a genome-wide association study (GWAS) to compare 270 DME cases and 176 PDR cases with 435 non-retinopathy controls. All participants were genotyped by SNP array and after data cleaning, cases were compared to controls using logistic regression adjusting for relevant covariates. Results The top ranked SNP for DME was rs1990145 (p = 4.10 × 10− 6, OR = 2.02 95%CI [1.50, 2.72]) on chromosome 2. The top-ranked SNP for PDR was rs918519 (p = 3.87 × 10− 6, OR = 0.35 95%CI [0.22, 0.54]) on chromosome 5. A trend towards association was also detected at two SNPs reported in the only other reported GWAS of DR in Caucasians; rs12267418 near MALRD1 (p = 0.008) in the DME cohort and rs16999051 in the diabetes gene PCSK2 (p = 0.007) in the PDR cohort. Conclusion This study has identified loci of interest for DME and PDR, two common ocular complications of diabetes. These findings require replication in other Caucasian cohorts with type 2 diabetes and larger cohorts will be required to identify genetic loci with statistical confidence. There is considerable overlap in the patient cohorts with each retinopathy subtype, complicating the search for genes that contribute to PDR and DME biology

    Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene

    No full text
    Aims/hypothesis\ud \ud Diabetic retinopathy is a serious complication of diabetes mellitus and can lead to blindness. A genetic component, in addition to traditional risk factors, has been well described although strong genetic factors have not yet been identified. Here, we aimed to identify novel genetic risk factors for sight-threatening diabetic retinopathy using a genome-wide association study.\ud \ud Methods\ud \ud Retinopathy was assessed in white Australians with type 2 diabetes mellitus. Genome-wide association analysis was conducted for comparison of cases of sight-threatening diabetic retinopathy (n = 336) with diabetic controls with no retinopathy (n = 508). Top ranking single nucleotide polymorphisms were typed in a type 2 diabetes replication cohort, a type 1 diabetes cohort and an Indian type 2 cohort. A mouse model of proliferative retinopathy was used to assess differential expression of the nearby candidate gene GRB2 by immunohistochemistry and quantitative western blot.\ud \ud Results\ud \ud The top ranked variant was rs3805931 with p = 2.66 × 10−7, but no association was found in the replication cohort. Only rs9896052 (p = 6.55 × 10−5) was associated with sight-threatening diabetic retinopathy in both the type 2 (p = 0.035) and the type 1 (p = 0.041) replication cohorts, as well as in the Indian cohort (p = 0.016). The study-wide meta-analysis reached genome-wide significance (p = 4.15 × 10−8). The GRB2 gene is located downstream of this variant and a mouse model of retinopathy showed increased GRB2 expression in the retina.\ud \ud Conclusions/interpretation\ud \ud Genetic variation near GRB2 on chromosome 17q25.1 is associated with sight-threatening diabetic retinopathy. Several genes in this region are promising candidates and in particular GRB2 is upregulated during retinal stress and neovascularisation

    Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions

    Get PDF
    The importance of commensal microbes for human health is increasingly recognized yet the impacts of evolutionary changes in human diet and culture on commensal microbiota remain almost unknown. Two of the greatest dietary shifts in human evolution involved the adoption of carbohydrate-rich Neolithic (farming) diets (beginning ~10,000 years before the present) and the more recent advent of industrially processed flour and sugar (in ~1850). Here, we show that calcified dental plaque (dental calculus) on ancient teeth preserves a detailed genetic record throughout this period. Data from 34 early European skeletons indicate that the transition from hunter-gatherer to farming shifted the oral microbial community to a disease-associated configuration. The composition of oral microbiota remained unexpectedly constant between Neolithic and medieval times, after which (the now ubiquitous) cariogenic bacteria became dominant, apparently during the Industrial Revolution. Modern oral microbiotic ecosystems are markedly less diverse than historic populations, which might be contributing to chronic oral (and other) disease in postindustrial lifestyles.Christina J Adler, Keith Dobney, Laura S Weyrich, John Kaidonis, Alan W Walker, Wolfgang Haak, Corey J A Bradshaw, Grant Townsend, Arkadiusz Sołtysiak, Kurt W Alt, Julian Parkhill & Alan Coope
    corecore