1,543 research outputs found

    Categorical information influences conscious perception: An interaction between object-substitution masking and repetition blindness

    No full text
    The visual system is constantly bombarded with dynamic input. In this context, the creation of enduring object representations presents a particular challenge. We used object-substitution masking (OSM) as a tool to probe these processes. In particular, we examined the effect of target-like stimulus repetitions on OSM. In visual crowding, the presentation of a physically identical stimulus to the target reduces crowding and improves target perception, whereas in spatial repetition blindness, the presentation of a stimulus that belongs to the same category (type) as the target impairs perception. Across two experiments, we found an interaction between spatial repetition blindness and OSM, such that repeating a same-type stimulus as the target increased masking magnitude relative to presentation of a different-type stimulus. These results are discussed in the context of the formation of object files. Moreover, the fact that the inducer only had to belong to the same "type" as the target in order to exacerbate masking, without necessarily being physically identical to the target, has important implications for our understanding of OSM per se. That is, our results show the target is processed to a categorical level in OSM despite effective masking and, strikingly, demonstrate that this category-level content directly influences whether or not the target is perceived, not just performance on another task (as in priming).This research was supported by an Australian Research Council (ARC) Discovery Early Career Research Award (DE140101734) awarded to S.C.G., and an ARC Discovery Project (DP110104553) grant awarded to M.E, and a UK Medical Research Council (MRC) Career Development Award to J.A.G. The authors thank Reuben Rideaux for assistance with the data collection

    Tuning properties of radial phantom motion aftereffects

    Get PDF
    AbstractMotion aftereffects are normally tested in regions of the visual field that have been directly exposed to motion (local or concrete MAEs). We compared concrete MAEs with remote or phantom MAEs, in which motion is perceived in regions not previously adapted to motion. Our aim was to study the spatial dependencies and spatiotemporal tuning of phantom MAEs generated by radially expanding stimuli. For concrete and phantom MAEs, peripheral stimuli generated stronger aftereffects than central stimuli. Concrete MAEs display temporal frequency tuning, while phantom MAEs do not show categorical temporal frequency or velocity tuning. We found that subjects may use different response strategies to determine motion direction when presented with different stimulus sizes. In some subjects, as adapting stimulus size increased, phantom MAE strength increased while the concrete MAE strength decreased; in other subjects, the opposite effects were observed. We hypothesise that these opposing findings reflect interplay between the adaptation of global motion sensors and local motion sensors with inhibitory interconnections

    Site investigation for the effects of vegetation on ground stability

    Get PDF
    The procedure for geotechnical site investigation is well established but little attention is currently given to investigating the potential of vegetation to assist with ground stability. This paper describes how routine investigation procedures may be adapted to consider the effects of the vegetation. It is recommended that the major part of the vegetation investigation is carried out, at relatively low cost, during the preliminary (desk) study phase of the investigation when there is maximum flexibility to take account of findings in the proposed design and construction. The techniques available for investigation of the effects of vegetation are reviewed and references provided for further consideration. As for general geotechnical investigation work, it is important that a balance of effort is maintained in the vegetation investigation between (a) site characterisation (defining and identifying the existing and proposed vegetation to suit the site and ground conditions), (b) testing (in-situ and laboratory testing of the vegetation and root systems to provide design parameters) and (c) modelling (to analyse the vegetation effects)

    Crowding changes appearance systematically in peripheral, amblyopic, and developing vision

    Get PDF
    Visual crowding is the disruptive effect of clutter on object recognition. Although most prominent in adult peripheral vision, crowding also disrupts foveal vision in typically developing children and those with strabismic amblyopia. Do these crowding effects share the same mechanism? Here we exploit observations that crowded errors in peripheral vision are not random: Target objects appear either averaged with the flankers (assimilation) or replaced by them (substitution). If amblyopic and developmental crowding share the same mechanism, then their errors should be similarly systematic. We tested foveal vision in children aged 3 to 8 years with typical vision or strabismic amblyopia and peripheral vision in typical adults. The perceptual effects of crowding were measured by requiring observers to adjust a reference stimulus to match the perceived orientation of a target “Vac-Man” element. When the target was surrounded by flankers that differed by ± 30°, all three groups (adults and children with typical or amblyopic vision) reported orientations between the target and flankers (assimilation). Errors were reduced with ± 90° differences but primarily matched the flanker orientation (substitution) when they did occur. A population pooling model of crowding successfully simulated this pattern of errors in all three groups. We conclude that the perceptual effects of amblyopic and developing crowding are systematic and resemble the near periphery in adults, suggesting a common underlying mechanism
    corecore