321 research outputs found
Complement and Dysbiosis in Periodontal Disease
Signaling crosstalk between complement and Toll-like receptors (TLRs) normally serves to coordinate host immunity. However, the periodontal bacterium Porphyromonas gingivalis expresses C5 convertase-like enzymatic activity and adeptly exploits complement-TLR crosstalk to subvert host defenses and escape elimination. Intriguingly, this defective immune surveillance leads to the remodeling of the periodontal microbiota to a dysbiotic state that causes inflammatory periodontitis. Understanding the mechanisms by which P. gingivalis modulates complement function to cause dysbiosis offers new targets for complement therapeutics
Release of endogenous C3b inactivator from lymphocytes in response to triggering membrane receptors for beta 1H globulin
Human bone marrow-derived lymphocytes and cells from B lymphoblastoid lines were shown to have specific membrane receptors for beta 1H globin. Lymphocytes responded to the presence of beta 1H by releasing endogenously-synthesized C3b-inactivator. Very little spontaneous release of C3b-inactivator occurred in the absence of beta 1H. beta 1H- treated lymphocytes that either lacked complement receptor type one (CR1, the C4b-C3b receptor) or had their CR1 blocked with Fab'-anti-CR1 formed rosettes with C3b-coated sheep erythrocytes (EC3b) by adherence to complement receptor type two (CR2, the C3d-C3bi receptor). The mechanism of the beta 1H-induced EC3b rosette formation was shown to involve the release of lymphocyte C3b-inactivator that cleaved bound C3b into C3bi forming EC3bi. This lymphocytes-generated EC3bi then bound to CR2, forming rosettes. beta 1H-induced EC3b rosettes were completely inhibited by the presence of either anti-C3b-inactivator, F(ab')2-anti-CR2, Fab-anti-C3c, or Fab-anti-C3d, but were unaffected by the presence of fluid-phase concentrations of beta 1H up to 5.5 mg/ml or Fab'-anti-CR1. Analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography demonstrated that cell-free supernates of beta 1H-treated lymphocytes cleaved 3H-labeled C3b on EC3b into C3bi. Inhibition studies with chelating agents and sodium azide suggested that the release of C3b inactivator might involve a calcium and energy-dependent transport of this enzyme across the membranes of beta 1H-triggered cells. Because plasma beta 1H and C3b-inactivator are known to have important functions in the distinction of alternative pathway-activating substances from normal tissue, it is possible that this beta 1H receptor-C3b-inactivatory releasing system in lymphocytes may have an analogous function
Short Leucine-Rich Proteoglycans Modulate Complement Activity and Increase Killing of the Respiratory Pathogen Moraxella catarrhalis
The respiratory pathogen Moraxella catarrhalis is a human-specific commensal that frequently causes acute otitis media in children and stimulates acute exacerbations in chronic obstructive pulmonary disease patients. The exact molecular mechanisms defining host-pathogen interactions promoting pathogenesis are not clearly understood. Limited knowledge hampers vaccine and immunotherapeutic development required to treat this emerging pathogen. In this study, we reveal in detail a novel antibacterial role displayed by short leucine-rich proteoglycans (SLRPs) in concert with complement. We show that fibromodulin (FMOD), osteoadherin (OSAD), and biglycan (BGN) but not decorin (DCN) enhance serum killing of M. catarrhalis. Our results suggest that M. catarrhalis binding to SLRPs is a conserved feature, as the overwhelming majority of clinical and laboratory strains bound all four SLRPs. Furthermore, we resolve the binding mechanism responsible for this interaction and highlight the role of the ubiquitous surface protein (Usp) A2/A2H in mediating binding to host SLRPs. A conserved immune evasive strategy used by M. catarrhalis and other pathogens is the surface acquisition of host complement inhibitors such as C4b-binding protein (C4BP). We observed that FMOD, OSAD, and BGN competitively inhibit binding of C4BP to the surface of M. catarrhalis, resulting in increased C3b/iC3b deposition, membrane attack complex (MAC) formation, and subsequently decreased bacterial survival. Furthermore, both OSAD and BGN promote enhanced neutrophil killing in vitro, both in a complement-dependent and independent fashion. In summary, our results illustrate that SLRPs, FMOD, OSAD, and BGN portray complement-modulating activity enhancing M. catarrhalis killing, defining a new antibacterial role supplied by SLRPs.</p
From Orphan Drugs to Adopted Therapies: Advancing C3-Targeted Intervention to the Clinical Stage
Complement dysregulation is increasingly recognized as an important pathogenic driver in a number of clinical disorders. Complement-triggered pathways intertwine with key inflammatory and tissue destructive processes that can either increase the risk of disease or exacerbate pathology in acute or chronic conditions. The launch of the first complement-targeted drugs in the clinic has undeniably stirred the field of complement therapeutic design, providing new insights into complement\u27s contribution to disease pathogenesis and also helping to leverage a more personalized, comprehensive approach to patient management. In this regard, a rapidly expanding toolbox of complement therapeutics is being developed to address unmet clinical needs in several immune-mediated and inflammatory diseases. Elegant approaches employing both surface-directed and fluid-phase inhibitors have exploited diverse components of the complement cascade as putative points of therapeutic intervention. Targeting C3, the central hub of the system, has proven to be a promising strategy for developing biologics as well as small-molecule inhibitors with clinical potential. Complement modulation at the level of C3 has recently shown promise in preclinical primate models, opening up new avenues for therapeutic intervention in both acute and chronic indications fueled by uncontrolled C3 turnover. This review highlights recent developments in the field of complement therapeutics, focusing on C3-directed inhibitors and alternative pathway (AP) regulator-based approaches. Translational perspectives and considerations are discussed, particularly with regard to the structure-guided drug optimization and clinical advancement of a new generation of C3-targeted peptidic inhibitors
Complement component C3: A structural perspective and potential therapeutic implications
As the most abundant component of the complement system, C3 and its proteolytic derivatives serve essential roles in the function of all three complement pathways. Central to this is a network of protein-protein interactions made possible by the sequential proteolysis and far-reaching structural changes that accompany C3 activation. Beginning with the crystal structures of C3, C3b, and C3c nearly twenty years ago, the physical transformations underlying C3 function that had long been suspected were finally revealed. In the years that followed, a compendium of crystallographic information on C3 derivatives bound to various enzymes, regulators, receptors, and inhibitors generated new levels of insight into the structure and function of the C3 molecule. This Review provides a concise classification, summary, and interpretation of the more than 50 unique crystal structure determinations for human C3. It also highlights other salient features of C3 structure that were made possible through solution-based methods, including Hydrogen/Deuterium Exchange and Small Angle X-ray Scattering. At this pivotal time when the first C3-targeted therapeutics begin to see use in the clinic, some perspectives are also offered on how this continually growing body of structural information might be leveraged for future development of next-generation C3 inhibitors
Complementing the cancer-immunity cycle
Reactivation of cytotoxic CD8+ T-cell responses has set a new direction for cancer
immunotherapy. Neutralizing antibodies targeting immune checkpoint programmed cell
death protein 1 (PD-1) or its ligand (PD-L1) have been particularly successful for tumor
types with limited therapeutic options such as melanoma and lung cancer. However,
reactivation of T cells is only one step toward tumor elimination, and a substantial fraction
of patients fails to respond to these therapies. In this context, combination therapies
targeting more than one of the steps of the cancer-immune cycle may provide significant
benefits. To find the best combinations, it is of upmost importance to understand the
interplay between cancer cells and all the components of the immune response. This
review focuses on the elements of the complement system that come into play in the
cancer-immunity cycle. The complement system, an essential part of innate immunity,
has emerged as a major regulator of cancer immunity. Complement effectors such
as C1q, anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1, have
been associated with tolerogenic cell death and inhibition of antitumor T-cell responses
through the recruitment and/or activation of immunosuppressive cell subpopulations
such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or M2
tumor-associated macrophages (TAMs). Evidence is provided to support the idea that
complement blocks many of the effector routes associated with the cancer-immunity
cycle, providing the rationale for new therapeutic combinations aimed to enhance the
antitumor efficacy of anti-PD-1/PD-L1 checkpoint inhibitors
First identification of a chemotactic receptor in an invertebrate species: Structural and functional characterization of Ciona intestinalis C3a receptor
In mammals, the bioactive fragment C3a, released from C3 during complement activation, is a potent mediator of inflammatory reactions and exerts its functional activity through the specific binding to cell surface G protein-coupled seven-transmembrane receptors. Recently, we demonstrated a Ciona intestinalis C3a (CiC3a)-mediated chemotaxis of hemocytes in the deuterostome invertebrate Ciona intestinalis and suggested an important role for this molecule in inflammatory processes. In the present work, we have cloned and characterized the receptor molecule involved in the CiC3a-mediated chemotaxis and studied its expression profile. The sequence, encoding a 95,394 Da seven-transmembrane domain protein, shows the highest sequence homology with mammalian C3aRs. Northern blot analysis revealed that the CiC3aR is expressed abundantly in the heart and neural complex and to a lesser extent in the ovaries, hemocytes, and larvae. Three polyclonal Abs raised in rabbits against peptides corresponding to CiC3aR regions of the first and second extracellular loop and of the third intracellular loop react specifically in Western blotting with a single band of 98–102 kDa in hemocyte protein extracts. Immunostaining performed on circulating hemocytes with the three specific Abs revealed that CiC3aR is constitutively expressed only in hyaline and granular amoebocytes. In chemotaxis experiments, the Abs against the first and second extracellular loop inhibited directional migration of hemocytes toward the synthetic peptide reproducing the CiC3a C-terminal sequence, thus providing the compelling evidence that C. intestinalis expresses a functional C3aR homologous to the mammalian receptor. These findings further elucidate the evolutionary origin of the vertebrate complement-mediated proinflammatory process
Regulators of complement activity mediate inhibitory mechanisms through a common C3b‐binding mode
Item does not contain fulltex
Complement C3dg-mediated erythrophagocytosis: Implications for paroxysmal nocturnal hemoglobinuria
The clinical management of paroxysmal nocturnal hemoglobinuria (PNH), a rare but life-threatening hematologic disease, has fundamentally improved with the introduction of a therapeutic that prevents complement-mediated intravascular hemolysis. However, a considerable fraction of PNH patients show insufficient treatment response and remain transfusion dependent. Because the current treatment only prevents C5-induced lysis but not upstream C3 activation, it has been speculated that ongoing opsonization with C3 fragments leads to recognition and phagocytosis of PNH erythrocytes by immune cells. Here, for the first time, we provide experimental evidence for such extravascular hemolysis and demonstrate that PNH erythrocytes from anti–C5-treated patients are phagocytosed by activated monocytes in vitro. Importantly, we show that this uptake can be mediated by the end-stage opsonin C3dg, which is not traditionally considered a phagocytic marker, via interaction with complement receptor 3 (CR3). Interaction studies confirmed that C3dg itself can act as a ligand for the binding domain of CR3. The degree of C3dg-mediated erythrophagocytosis in samples from different PNH patients correlated well with the individual level of C3dg opsonization. This finding may guide future treatment options for PNH but also has potential implications for the description and management of other complement-mediated diseases
- …