23,687 research outputs found
Fermi distribution of semicalssical non-eqilibrium Fermi states
When a classical device suddenly perturbs a degenerate Fermi gas a
semiclassical non-equilibrium Fermi state arises. Semiclassical Fermi states
are characterized by a Fermi energy or Fermi momentum that slowly depends on
space or/and time. We show that the Fermi distribution of a semiclassical Fermi
state has a universal nature. It is described by Airy functions regardless of
the details of the perturbation. In this letter we also give a general
discussion of coherent Fermi states
Large time asymptotics of growth models on space-like paths II: PNG and parallel TASEP
We consider the polynuclear growth (PNG) model in 1+1 dimension with flat
initial condition and no extra constraints. The joint distributions of surface
height at finitely many points at a fixed time moment are given as marginals of
a signed determinantal point process. The long time scaling limit of the
surface height is shown to coincide with the Airy_1 process. This result holds
more generally for the observation points located along any space-like path in
the space-time plane. We also obtain the corresponding results for the discrete
time TASEP (totally asymmetric simple exclusion process) with parallel update.Comment: 39 pages,6 figure
KPZ equation in one dimension and line ensembles
For suitably discretized versions of the Kardar-Parisi-Zhang equation in one
space dimension exact scaling functions are available, amongst them the
stationary two-point function. We explain one central piece from the technology
through which such results are obtained, namely the method of line ensembles
with purely entropic repulsion.Comment: Proceedings STATPHYS22, Bangalore, 200
Non-colliding Brownian Motions and the extended tacnode process
We consider non-colliding Brownian motions with two starting points and two
endpoints. The points are chosen so that the two groups of Brownian motions
just touch each other, a situation that is referred to as a tacnode. The
extended kernel for the determinantal point process at the tacnode point is
computed using new methods and given in a different form from that obtained for
a single time in previous work by Delvaux, Kuijlaars and Zhang. The form of the
extended kernel is also different from that obtained for the extended tacnode
kernel in another model by Adler, Ferrari and van Moerbeke. We also obtain the
correlation kernel for a finite number of non-colliding Brownian motions
starting at two points and ending at arbitrary points.Comment: 38 pages. In the revised version a few arguments have been expanded
and many typos correcte
On the stability of quantum holonomic gates
We provide a unified geometrical description for analyzing the stability of
holonomic quantum gates in the presence of imprecise driving controls
(parametric noise). We consider the situation in which these fluctuations do
not affect the adiabatic evolution but can reduce the logical gate performance.
Using the intrinsic geometric properties of the holonomic gates, we show under
which conditions on noise's correlation time and strength, the fluctuations in
the driving field cancel out. In this way, we provide theoretical support to
previous numerical simulations. We also briefly comment on the error due to the
mismatch between real and nominal time of the period of the driving fields and
show that it can be reduced by suitably increasing the adiabatic time.Comment: 7 page
Non-adiabatic holonomic quantum computation
We develop a non-adiabatic generalization of holonomic quantum computation in
which high-speed universal quantum gates can be realized by using non-Abelian
geometric phases. We show how a set of non-adiabatic holonomic one- and
two-qubit gates can be implemented by utilizing optical transitions in a
generic three-level configuration. Our scheme opens up for universal
holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde
Polynuclear growth model, GOE and random matrix with deterministic source
We present a random matrix interpretation of the distribution functions which
have appeared in the study of the one-dimensional polynuclear growth (PNG)
model with external sources. It is shown that the distribution, GOE, which
is defined as the square of the GOE Tracy-Widom distribution, can be obtained
as the scaled largest eigenvalue distribution of a special case of a random
matrix model with a deterministic source, which have been studied in a
different context previously. Compared to the original interpretation of the
GOE as ``the square of GOE'', ours has an advantage that it can also
describe the transition from the GUE Tracy-Widom distribution to the GOE.
We further demonstrate that our random matrix interpretation can be obtained
naturally by noting the similarity of the topology between a certain
non-colliding Brownian motion model and the multi-layer PNG model with an
external source. This provides us with a multi-matrix model interpretation of
the multi-point height distributions of the PNG model with an external source.Comment: 27pages, 4 figure
Average characteristic polynomials in the two-matrix model
The two-matrix model is defined on pairs of Hermitian matrices of
size by the probability measure where
and are given potential functions and \tau\in\er. We study averages
of products and ratios of characteristic polynomials in the two-matrix model,
where both matrices and may appear in a combined way in both
numerator and denominator. We obtain determinantal expressions for such
averages. The determinants are constructed from several building blocks: the
biorthogonal polynomials and associated to the two-matrix
model; certain transformed functions and \Q_n(v); and finally
Cauchy-type transforms of the four Eynard-Mehta kernels , ,
and . In this way we generalize known results for the
-matrix model. Our results also imply a new proof of the Eynard-Mehta
theorem for correlation functions in the two-matrix model, and they lead to a
generating function for averages of products of traces.Comment: 28 pages, references adde
Enviromental Implications of Växjö Municipality's Energy Requirement for New Residential Buildings
AbstractThe Växjö Municipality in Sweden sets specific energy requirements above the national building code while selling land for new residential buildings. A main energy requirement for Östra Lugnet residential area in Växjö was that all buildings must be connected to the district heating network. In this paper we analysed final energy use of the buildings, and compared the primary energy use and CO2 emission from operation of the buildings connected to district heating system with hypothetical scenarios where only air-source heat pumps were installed. The result showed that district heating is the better option from the perspective of lower carbon emission. Therefore, it seems appropriate for Växjö Municipality to set conditions for new residential buildings in Östra Lugnet to connect to the local district heating network as it contributes to its goal of low carbon society
On the partial connection between random matrices and interacting particle systems
In the last decade there has been increasing interest in the fields of random
matrices, interacting particle systems, stochastic growth models, and the
connections between these areas. For instance, several objects appearing in the
limit of large matrices arise also in the long time limit for interacting
particles and growth models. Examples of these are the famous Tracy-Widom
distribution functions and the Airy_2 process. The link is however sometimes
fragile. For example, the connection between the eigenvalues in the Gaussian
Orthogonal Ensembles (GOE) and growth on a flat substrate is restricted to
one-point distribution, and the connection breaks down if we consider the joint
distributions. In this paper we first discuss known relations between random
matrices and the asymmetric exclusion process (and a 2+1 dimensional
extension). Then, we show that the correlation functions of the eigenvalues of
the matrix minors for beta=2 Dyson's Brownian motion have, when restricted to
increasing times and decreasing matrix dimensions, the same correlation kernel
as in the 2+1 dimensional interacting particle system under diffusion scaling
limit. Finally, we analyze the analogous question for a diffusion on (complex)
sample covariance matrices.Comment: 31 pages, LaTeX; Added a section concerning the Markov property on
space-like path
- …