23,368 research outputs found

    Undoing measurement-induced dephasing in circuit QED

    Get PDF
    We analyze the backaction of homodyne detection and photodetection on superconducting qubits in circuit quantum electrodynamics. Although both measurement schemes give rise to backaction in the form of stochastic phase rotations, which leads to dephasing, we show that this can be perfectly undone provided that the measurement signal is fully accounted for. This result improves upon that of Phys. Rev. A, 82, 012329 (2010), showing that the method suggested can be made to realize a perfect two-qubit parity measurement. We propose a benchmarking experiment on a single qubit to demonstrate the method using homodyne detection. By analyzing the limited measurement efficiency of the detector and bandwidth of the amplifier, we show that the parameter values necessary to see the effect are within the limits of existing technology

    Optical Versus Mid-Infrared Spectroscopic Classification of Ultraluminous Infrared Galaxies

    Get PDF
    The origin of huge infrared luminosities of ultraluminous infrared galaxies (ULIGs) is still in question. Recently, Genzel et al. made mid-infrared (MIR) spectroscopy of a large number of ULIGs and found that the major energy source in them is massive stars formed in the recent starburst activity; i.e., ∌\sim 70% -- 80% of the sample are predominantly powered by the starburst. However, it is known that previous optical spectroscopic observations showed that the majority of ULIGs are classified as Seyferts or LINERs (low-ionization nuclear emission-line regions). In order to reconcile this difference, we compare types of emission-line activity for a sample of ULIGs which have been observed in both optical and MIR. We confirm the results of previous studies that the majority of ULIGs classified as LINERs based on the optical emission-line diagnostics turn to be starburst-dominated galaxies based on the MIR ones. Since the MIR spectroscopy can probe more heavily-reddened, inner parts of the ULIGs, it is quite unlikely that the inner parts are powered by the starburst while the outer parts are powered by non-stellar ionization sources. The most probable resolution of this dilemma is that the optical emission-line nebulae with the LINER properties are powered predominantly by shock heating driven by the superwind activity; i.e., a blast wave driven by a collective effect of a large number of supernovae in the central region of galaxy mergers.Comment: 15 pages, 2 tables, and 3 eps figures. The Astrophysical Journal (Part 1), in pres

    Topical analgesia for acute otitis media

    Get PDF
    BACKGROUND: Acute otitis media (AOM) is a spontaneously remitting disease of which pain is the most distressing symptom. Antibiotics are now known to have less benefit than previously assumed. Topical pain relief may be a satisfactory intervention for AOM sufferers and encourage clinicians to prescribe fewer antibiotics. OBJECTIVES: To assess the effectiveness of topical analgesia for AOM in adults and children. SEARCH METHODS: For this second update we searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 1), Ovid MEDLINE (2008 to February Week 1 2011), Ovid MEDLINE (In‐Process & Other Non‐Indexed Citations 10 February 2011), Ovid EMBASE (2008 to 2011 Week 05), EBSCO CINAHL (2008 to 4 February 2011) and Ovid AMED (2008 to April 2011). SELECTION CRITERIA: Double‐blind randomised controlled trials (RCTs) or quasi‐RCTs comparing an otic preparation with an analgesic effect (excluding antibiotics) versus placebo or an otic preparation with an analgesic effect (excluding antibiotics) versus any other otic preparation with an analgesic effect, in adults or children presenting at primary care settings with AOM without perforation. DATA COLLECTION AND ANALYSIS: Three review authors independently screened studies, assessed trial quality and extracted data. Attempts to obtain additional information from the trial authors of the included trials were unsuccessful. MAIN RESULTS: Five trials including 391 children aged three to 18 years met our criteria. Two studies (117 children) compared anaesthetic ear drops versus placebo immediately at diagnosis. All children received some form of oral pain relief. In all five studies it was clear that ear pain diminishes rapidly for most sufferers. Nevertheless there was a statistically significant difference in the proportion of children achieving a 50% reduction in pain in favour of anaesthetic drops 10 minutes after instillation (risk ratio (RR) 2.13, 95% confidence interval (CI) 1.19 to 3.80) and 30 minutes after instillation (RR 1.43, 95% CI 1.12 to 1.81) on the day AOM was diagnosed but not at 20 minutes (RR 1.24, 95% CI 0.88 to 1.74). Three trials (274 children) compared anaesthetic ear drops with naturopathic herbal ear drops. Naturopathic drops were favoured 15 and 30 minutes after instillation, one to three days after diagnosis, but the differences were not statistically significant. Only one trial looked at adverse reactions and found none. Overall the findings of this review are based on trial evidence that is at low or unclear risk of bias. AUTHORS' CONCLUSIONS: Evidence from five RCTs, only two of which addressed the most relevant question of primary effectiveness, provides limited evidence that ear drops are effective 30 minutes after administration in older children with AOM. Uncertainty exists as to the magnitude of this effect and more high‐quality studies are needed

    Coadjoint orbits of the Virasoro algebra and the global Liouville equation

    Get PDF
    The classification of the coadjoint orbits of the Virasoro algebra is reviewed and is then applied to analyze the so-called global Liouville equation. The review is self-contained, elementary and is tailor-made for the application. It is well-known that the Liouville equation for a smooth, real field ϕ\phi under periodic boundary condition is a reduction of the SL(2,R) WZNW model on the cylinder, where the WZNW field g in SL(2,R) is restricted to be Gauss decomposable. If one drops this restriction, the Hamiltonian reduction yields, for the field Q=Îșg22Q=\kappa g_{22} where Îș≠0\kappa\neq 0 is a constant, what we call the global Liouville equation. Corresponding to the winding number of the SL(2,R) WZNW model there is a topological invariant in the reduced theory, given by the number of zeros of Q over a period. By the substitution Q=±exp⁥(−ϕ/2)Q=\pm\exp(- \phi/2), the Liouville theory for a smooth ϕ\phi is recovered in the trivial topological sector. The nontrivial topological sectors can be viewed as singular sectors of the Liouville theory that contain blowing-up solutions in terms of ϕ\phi. Since the global Liouville equation is conformally invariant, its solutions can be described by explicitly listing those solutions for which the stress-energy tensor belongs to a set of representatives of the Virasoro coadjoint orbits chosen by convention. This direct method permits to study the `coadjoint orbit content' of the topological sectors as well as the behaviour of the energy in the sectors. The analysis confirms that the trivial topological sector contains special orbits with hyperbolic monodromy and shows that the energy is bounded from below in this sector only.Comment: Plain TEX, 48 pages, final version to appear in IJMP

    Is the Mott transition relevant to f-electron metals ?

    Full text link
    We study how a finite hybridization between a narrow correlated band and a wide conduction band affects the Mott transition. At zero temperature, the hybridization is found to be a relevant perturbation, so that the Mott transition is suppressed by Kondo screening. In contrast, a first-order transition remains at finite temperature, separating a local moment phase and a Kondo- screened phase. The first-order transition line terminates in two critical endpoints. Implications for experiments on f-electron materials such as the Cerium alloy Ce0.8_{0.8}La0.1_{0.1}Th0.1_{0.1} are discussed.Comment: 5 pages, 3 figure

    Levitated droplet dye laser

    Get PDF
    We present the first observation, to our knowledge, of lasing from a levitated, dye droplet. The levitated droplets are created by computer controlled pico-liter dispensing into one of the nodes of a standing ultrasonic wave (100 kHz), where the droplet is trapped. The free hanging droplet forms a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating spectrometer. With this setup we have achieved reproducible lasing spectra in the visible wavelength range from 610 nm to 650 nm. The levitated droplet technique has previously successfully been applied for a variety of bio-analytical applications at single cell level. In combination with the lasing droplets, the capability of this high precision setup has potential applications within highly sensitive intra-cavity absorbance detection.Comment: 6 pages including 3 figure

    Quantum information processing using frequency control of impurity spins in diamond

    Full text link
    Spin degrees of freedom of charged nitrogen-vacancy (NV−^-) centers in diamond have large decoherence times even at room temperature, can be initialized and read out using optical fields, and are therefore a promising candidate for solid state qubits. Recently, quantum manipulations of NV−^-- centers using RF fields were experimentally realized. In this paper we show; first, that such operations can be controlled by varying the frequency of the signal, instead of its amplitude, and NV−^-- centers can be selectively addressed even with spacially uniform RF signals; second, that when several \NV - centers are placed in an off-resonance optical cavity, a similar application of classical optical fields provides a controlled coupling and enables a universal two-qubit gate (CPHASE). RF and optical control together promise a scalable quantum computing architecture

    Enhancing the conductance of a two-electron nanomechanical oscillator

    Full text link
    We consider electron transport through a mobile island (i.e., a nanomechanical oscillator) which can accommodate one or two excess electrons and show that, in contrast to immobile islands, the Coulomb blockade peaks, associated with the first and second electrons entering the island, have different functional dependences on the nano-oscillator parameters when the island coupling to its leads is asymmetric. In particular, the conductance for the second electron (i.e., when the island is already charged) is greatly enhanced in comparison to the conductance of the first electron in the presence of an external electric field. We also analyze the temperature dependence of the two conduction peaks and show that these exhibit different functional behaviors.Comment: 16 pages, 5 figure

    Atomic Processes in Planetary Nebulae and H II Regions

    Full text link
    Spectroscopic studies of Planetary Nebulae (PNe) and H {\sc ii} regions have driven much development in atomic physics. In the last few years the combination of a generation of powerful observatories, the development of ever more sophisticated spectral modeling codes, and large efforts on mass production of high quality atomic data have led to important progress in our understanding of the atomic spectra of such astronomical objects. In this paper I review such progress, including evaluations of atomic data by comparisons with nebular spectra, detection of spectral lines from most iron-peak elements and n-capture elements, observations of hyperfine emission lines and analysis of isotopic abundances, fluorescent processes, and new techniques for diagnosing physical conditions based on recombination spectra. The review is directed toward atomic physicists and spectroscopists trying to establish the current status of the atomic data and models and to know the main standing issues.Comment: 9 pages, 1 figur
    • 

    corecore