17,392 research outputs found
Partial-measurement back-action and non-classical weak values in a superconducting circuit
We realize indirect partial measurement of a transmon qubit in circuit
quantum electrodynamics by interaction with an ancilla qubit and projective
ancilla measurement with a dedicated readout resonator. Accurate control of the
interaction and ancilla measurement basis allows tailoring the measurement
strength and operator. The tradeoff between measurement strength and qubit
back-action is characterized through the distortion of a qubit Rabi oscillation
imposed by ancilla measurement in different bases. Combining partial and
projective qubit measurements, we provide the solid-state demonstration of the
correspondence between a non-classical weak value and the violation of a
Leggett-Garg inequality.Comment: 5 pages, 4 figures, and Supplementary Information (8 figures
Coherent and sequential photoassisted tunneling through a semiconductor double barrier structure
We have studied the problem of coherent and sequential tunneling through a
double barrier structure, assisted by light considered to be present All over
the structure, i,e emitter, well and collector as in the experimental evidence.
By means of a canonical transformation and in the framework of the time
dependent perturbation theory, we have calculated the transmission coefficient
and the electronic resonant current. Our calculations have been compared with
experimental results turning out to be in good agreement. Also the effect on
the coherent tunneling of a magnetic field parallel to the current in the
presence of light, has been considered.Comment: Revtex3.0, 8figures uuencoded compressed tar-fil
MANAGING MANURE TO IMPROVE AIR AND WATER QUALITY
Animal waste from confined animal feeding operations is a potential source of air and water quality degradation from evaporation of gases, runoff to surface water, and leaching to ground water. This report assesses the potential economic and environmental tradeoffs between water quality policies and air quality policies that require the animal agriculture sector to take potentially costly measures to abate pollution. A farm-level analysis of hog farms estimates the economic and environmental tradeoffs that occur when policies are designed to address pollutant flows to one environmental medium without considering flows to another medium. A national analysis addresses the broader impacts of coordinated (water and air) policies, including long-term structural adjustments and welfare impacts on both producers and consumers. The report also analyzes the potential implications of adding air quality regulations to existing Clean Water Act regulations in the Chesapeake Bay watershed, where a limited land base increases producers' costs of meeting manure management requirements.animal waste, nitrogen, ammonia, water quality, nutrient management plan, manure management costs, price and quantity adjustments, CAFO, Environmental Economics and Policy, Livestock Production/Industries,
Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions
The internally electrodynamic (IED) particle model was derived based on
overall experimental observations, with the IED process itself being built
directly on three experimental facts, a) electric charges present with all
material particles, b) an accelerated charge generates electromagnetic waves
according to Maxwell's equations and Planck energy equation and c) source
motion produces Doppler effect. A set of well-known basic particle equations
and properties become predictable based on first principles solutions for the
IED process; several key solutions achieved are outlined, including the de
Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass,
Einstein mass-energy relation, Newton's law of gravity, single particle self
interference, and electromagnetic radiation and absorption; these equations and
properties have long been broadly experimentally validated or demonstrated. A
specific solution also predicts the Doebner-Goldin equation which emerges to
represent a form of long-sought quantum wave equation including gravity. A
critical review of the key experiments is given which suggests that the IED
process underlies the basic particle equations and properties not just
sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200
Observation of quantum capacitance in the Cooper-pair transistor
We have fabricated a Cooper-pair transistor (CPT) with parameters such that
for appropriate voltage biases, the sub-gap charge transport takes place via
slow tunneling of quasiparticles that link two Josephson-coupled charge
manifolds. In between the quasiparticle tunneling events, the CPT behaves
essentially like a single Cooper-pair box (SCB). The effective capacitance of a
SCB can be defined as the derivative of the induced charge with respect to gate
voltage. This capacitance has two parts, the geometric capacitance, C_geom, and
the quantum capacitance C_Q. The latter is due to the level anti-crossing
caused by the Josephson coupling. It depends parametrically on the gate voltage
and is dual to the Josephson inductance. Furthermore, it's magnitude may be
substantially larger than C_geom. We have been able to detect C_Q in our CPT,
by measuring the in-phase and quadrature rf-signal reflected from a resonant
circuit in which the CPT is embedded. C_Q can be used as the basis of a charge
qubit readout by placing a Cooper-pair box in such a resonant circuit.Comment: 3 figure
Comparison of optical model results from a microscopic Schr\"odinger approach to nucleon-nucleus elastic scattering with those from a global Dirac phenomenology
Comparisons are made between results of calculations for intermediate energy
nucleon-nucleus scattering for 12C, 16O, 40Ca, 90Zr, and 208Pb, using optical
potentials obtained from global Dirac phenomenology and from a microscopic
Schr\"odinger model. Differential cross sections and spin observables for
scattering from the set of five nuclei at 65 MeV and 200 MeV have been studied
to assess the relative merits of each approach. Total reaction cross sections
from proton-nucleus and total cross sections from neutron-nucleus scattering
have been evaluated and compared with data for those five targets in the energy
range 20 MeV to 800 MeV. The methods of analyses give results that compare well
with experimental data in those energy regimes for which the procedures are
suited.Comment: 22 pages, 12 figure
New Pseudo-Phase Structure for -Pu
In this paper we propose a new pseudo-phase crystal structure, based on an
orthorhombic distortion of the diamond structure, for the ground-state
-phase of plutonium. Electronic-structure calculations in the
generalized-gradient approximation give approximately the same total energy for
the two structures. Interestingly, our new pseudo-phase structure is the same
as the Pu -phase structure except with very different b/a and c/a
ratios. We show how the contraction relative to the phase, principally
in the direction, leads to an -like structure in the [0,1,1] plane.
This is an important link between two complex structures of plutonium and opens
new possibilities for exploring the very rich phase diagram of Pu through
theoretical calculations
Increasing subsequences and the hard-to-soft edge transition in matrix ensembles
Our interest is in the cumulative probabilities Pr(L(t) \le l) for the
maximum length of increasing subsequences in Poissonized ensembles of random
permutations, random fixed point free involutions and reversed random fixed
point free involutions. It is shown that these probabilities are equal to the
hard edge gap probability for matrix ensembles with unitary, orthogonal and
symplectic symmetry respectively. The gap probabilities can be written as a sum
over correlations for certain determinantal point processes. From these
expressions a proof can be given that the limiting form of Pr(L(t) \le l) in
the three cases is equal to the soft edge gap probability for matrix ensembles
with unitary, orthogonal and symplectic symmetry respectively, thereby
reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page
Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands
We have built a line list in the near-infrared J and H bands (1.00-1.34,
1.49-1.80 um) by gathering a series of laboratory and computed line lists.
Oscillator strengths and damping constants were computed or obtained by fitting
the solar spectrum.
The line list presented in this paper is, to our knowledge, the most complete
one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for
the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at
http://www.iagusp.usp.br/~jorge
Physics of Polymorphic Transitions in CeRuSn
We report a detailed study of the polymorphic transitions in ternary stannide
CeRuSn on high quality single crystals through a combination of X-ray
diffraction experiments conducted at 300, 275 and 120 K, and measurements of
the thermal expansion, magnetization, and resistivity, along main
crystallographic axes. In addition, the transition was followed as a function
of pressure up to 0.8 GPa. The present X-ray diffraction data show that the
room temperature polymorph consists of the lattice doubled along the c axis
with respect to the CeCoAl-type structure consistent with previous reports.
Upon cooling, the compound undergoes two successive transitions, first to a
quintuple (290 K) and than to a triple CeCoAl superstructure at 225 K. The
transitions are accompanied by a tremendous volume change due to a strong
shrinking of the lattice along the c axis, which is clearly observed in thermal
expansion. We advance arguments that the volume collapse originates from an
increasing number of crystallographically inequivalent Ce sites and the change
of ratio between the short and long Ce-Ru bonds. The observed properties of the
polymorphic transition in CeRuSn are reminiscent of the transition in
elementary Cerium, suggesting that similar physics, i.e., a Kondo influenced
transition and strong lattice vibrations might be the driving forces
- …