20,010 research outputs found

    New Fe II energy levels from stellar spectra

    Full text link
    The spectra of B-type and early A-type stars show numerous unidentified lines in the whole optical range, especially in the 5100 - 5400 A interval. Because Fe II transitions to high energy levels should be observed in this region, we used semiempirical predicted wavelengths and gf-values of Fe II to identify unknown lines. Semiempirical line data for Fe II computed by Kurucz are used to synthesize the spectrum of the slow-rotating, Fe-overabundant CP star HR 6000. We determined a total of 109 new 4f levels for Fe II with energies ranging from 122324 cm^-1 to 128110 cm^-1. They belong to the Fe II subconfigurations 3d^6(^3P)4f (10 levels), 3d^6(^3H)4f (36 levels), 3d^6(^3F)4f (37 levels), and 3d^6(^3G)4f (26 levels). We also found 14 even levels from 4d (3 levels), 5d (7 levels), and 6d (4 levels) configurations. The new levels have allowed us to identify more than 50% of the previously unidentified lines of HR 6000 in the wavelength region 3800-8000 A. Tables listing the new energy levels are given in the paper; tables listing the spectral lines with loggf>/=-1.5 that are transitions to the 4f energy levels are given in the Online Material. These new levels produce 18000 lines throughout the spectrum from the ultraviolet to the infrared.Comment: Paper accepted by A&A for publicatio

    The Theory Behind TheoryMine

    Get PDF
    Abstract. We describe the technology behind the TheoryMine novelty gift company, which sells the rights to name novel mathematical theorems. A tower of four computer systems is used to generate recursive theories, then to speculate conjectures in those theories and then to prove these conjectures. All stages of the process are entirely automatic. The process guarantees large numbers of sound, novel theorems of some intrinsic merit.

    High Excitation Molecular Gas in the Magellanic Clouds

    Full text link
    We present the first survey of submillimeter CO 4-3 emission in the Magellanic Clouds. The survey is comprised of 15 6'x6' maps obtained using the AST/RO telescope toward the molecular peaks of the Large and Small Magellanic Clouds. We have used these data to constrain the physical conditions in these objects, in particular their molecular gas density and temperature. We find that there are significant amounts of molecular gas associated with most of these molecular peaks, and that high molecular gas temperatures are pervasive throughout our sample. We discuss whether this may be due to the low metallicities and the associated dearth of gas coolants in the Clouds, and conclude that the present sample is insufficient to assert this effect.Comment: 18 pages, 3 figures, 5 tables. To appear in Ap

    Controllable coherent population transfers in superconducting qubits for quantum computing

    Full text link
    We propose an approach to coherently transfer populations between selected quantum states in one- and two-qubit systems by using controllable Stark-chirped rapid adiabatic passages (SCRAPs). These {\it evolution-time insensitive} transfers, assisted by easily implementable single-qubit phase-shift operations, could serve as elementary logic gates for quantum computing. Specifically, this proposal could be conveniently demonstrated with existing Josephson phase qubits. Our proposal can find an immediate application in the readout of these qubits. Indeed, the broken parity symmetries of the bound states in these artificial "atoms" provide an efficient approach to design the required adiabatic pulses.Comment: 4 pages, 6 figures. to appear in Physical Review Letter

    Mars riometer system

    Get PDF
    A riometer (relative ionospheric opacity meter) measures the intensity of cosmic radio noise at the surface of a planet. When an electromagnetic wave passes through the ionosphere collisions between charged particles (usually electrons) and neutral gases remove energy from the wave. By measuring the received signal intensity at the planet's surface and comparing it to the expected value (the quietday curve) a riometer can deduce the absorption (attenuation) of the trans-ionospheric signal. Thus the absorption measurements provide an indication of ionisation changes occurring in the ionosphere. To avoid the need for orbiting sounders riometers use the cosmic noise background as a signal source. Earth-based systems are not subject to the challenging power, volume and mass restriction that would apply to a riometer for Mars. Some Earth-based riometers utilise phased-array antennas in order to provide an imaging capability.UnpublishedVienna - Austria3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeope

    Optical Versus Mid-Infrared Spectroscopic Classification of Ultraluminous Infrared Galaxies

    Get PDF
    The origin of huge infrared luminosities of ultraluminous infrared galaxies (ULIGs) is still in question. Recently, Genzel et al. made mid-infrared (MIR) spectroscopy of a large number of ULIGs and found that the major energy source in them is massive stars formed in the recent starburst activity; i.e., \sim 70% -- 80% of the sample are predominantly powered by the starburst. However, it is known that previous optical spectroscopic observations showed that the majority of ULIGs are classified as Seyferts or LINERs (low-ionization nuclear emission-line regions). In order to reconcile this difference, we compare types of emission-line activity for a sample of ULIGs which have been observed in both optical and MIR. We confirm the results of previous studies that the majority of ULIGs classified as LINERs based on the optical emission-line diagnostics turn to be starburst-dominated galaxies based on the MIR ones. Since the MIR spectroscopy can probe more heavily-reddened, inner parts of the ULIGs, it is quite unlikely that the inner parts are powered by the starburst while the outer parts are powered by non-stellar ionization sources. The most probable resolution of this dilemma is that the optical emission-line nebulae with the LINER properties are powered predominantly by shock heating driven by the superwind activity; i.e., a blast wave driven by a collective effect of a large number of supernovae in the central region of galaxy mergers.Comment: 15 pages, 2 tables, and 3 eps figures. The Astrophysical Journal (Part 1), in pres

    Star formation in the giant HII regions of M101

    Get PDF
    The molecular components of three giant HII regions (NGC 5461, NGC 5462, NGC 5471) in the galaxy M101 are investigated with new observations from the James Clerk Maxwell Telescope, the NRAO 12-meter, and the Owens Valley millimeter array. Of the three HII regions, only NGC 5461 had previously been detected in CO emission. We calculate preliminary values for the molecular mass of the GMCs in NGC 5461 by assuming a CO-to-H_2 factor (X factor) and then compare these values with the virial masses. We conclude that the data in this paper demonstrate for the first time that the value of X may decrease in regions with intense star formation. The molecular mass for the association of clouds in NGC 5461 is approximately 3x10^7 Mo and is accompanied by 1-2 times as much atomic mass. The observed CO emission in NGC 5461 is an order of magnitude stronger than in NGC 5462, while it was not possible to detect molecular gas toward NGC 5471 with the JCMT. An even larger ratio of atomic to molecular gas in NGC 5471 was observed, which might be attributed to efficient conversion of molecular to atomic gas. The masses of the individual clouds in NGC 5461, which are gravitationally bound, cover a range of (2-8) x 10^5 Mo, comparable with the masses of Galactic giant molecular clouds (GMCs). Higher star forming efficiencies, and not massive clouds, appear to be the prerequisite for the formation of the large number of stars whose radiation is required to produce the giant HII regions in M101.Comment: 32 pages, 5 figures, accepted for publication in the Astrophysical Journa

    KPZ equation in one dimension and line ensembles

    Full text link
    For suitably discretized versions of the Kardar-Parisi-Zhang equation in one space dimension exact scaling functions are available, amongst them the stationary two-point function. We explain one central piece from the technology through which such results are obtained, namely the method of line ensembles with purely entropic repulsion.Comment: Proceedings STATPHYS22, Bangalore, 200

    The Mass Function of Super Giant Molecular Complexes and Implications for Forming Young Massive Star Clusters in the Antennae (NGC 4038/39)

    Full text link
    We have used previously published observations of the CO emission from the Antennae (NGC 4038/39) to study the detailed properties of the super giant molecular complexes with the goal of understanding the formation of young massive star clusters. Over a mass range from 5E6 to 9E8 solar masses, the molecular complexes follow a power-law mass function with a slope of -1.4 +/- 0.1, which is very similar to the slope seen at lower masses in molecular clouds and cloud cores in the Galaxy. Compared to the spiral galaxy M51, which has a similar surface density and total mass of molecular gas, the Antennae contain clouds that are an order of magnitude more massive. Many of the youngest star clusters lie in the gas-rich overlap region, where extinctions as high as Av~100 imply that the clusters must lie in front of the gas. Combining data on the young clusters, thermal and nonthermal radio sources, and the molecular gas suggests that young massive clusters could have formed at a constant rate in the Antennae over the last 160 Myr and that sufficient gas exists to sustain this cluster formation rate well into the future. However, this conclusion requires that a very high fraction of the massive clusters that form initially in the Antennae do not survive as long as 100 Myr. Finally, we compare our data with two models for massive star cluster formation and conclude that the model where young massive star clusters form from dense cores within the observed super giant molecular complexes is most consistent with our current understanding of this merging system. (abbreviated)Comment: 40 pages, four figures; accepted for publication in Ap

    Models for energy and charge transport and storage in biomolecules

    Full text link
    Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrodinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the total energy. The possibility of controlled switching between pinned and mobile states is demonstrated. The mechanism could be important for controlling energy storage and transport in DNA molecules. Another model is offered for the description of nonlinear excitations in proteins and other anharmonic biomolecules. We show that in the highly anharmonic systems a bound state of Davydov and Boussinesq solitons can exist.Comment: 12 pages (latex), 12 figures (ps
    corecore