20,010 research outputs found
New Fe II energy levels from stellar spectra
The spectra of B-type and early A-type stars show numerous unidentified lines
in the whole optical range, especially in the 5100 - 5400 A interval. Because
Fe II transitions to high energy levels should be observed in this region, we
used semiempirical predicted wavelengths and gf-values of Fe II to identify
unknown lines. Semiempirical line data for Fe II computed by Kurucz are used to
synthesize the spectrum of the slow-rotating, Fe-overabundant CP star HR 6000.
We determined a total of 109 new 4f levels for Fe II with energies ranging from
122324 cm^-1 to 128110 cm^-1. They belong to the Fe II subconfigurations
3d^6(^3P)4f (10 levels), 3d^6(^3H)4f (36 levels), 3d^6(^3F)4f (37 levels), and
3d^6(^3G)4f (26 levels). We also found 14 even levels from 4d (3 levels), 5d (7
levels), and 6d (4 levels) configurations. The new levels have allowed us to
identify more than 50% of the previously unidentified lines of HR 6000 in the
wavelength region 3800-8000 A. Tables listing the new energy levels are given
in the paper; tables listing the spectral lines with loggf>/=-1.5 that are
transitions to the 4f energy levels are given in the Online Material. These new
levels produce 18000 lines throughout the spectrum from the ultraviolet to the
infrared.Comment: Paper accepted by A&A for publicatio
The Theory Behind TheoryMine
Abstract. We describe the technology behind the TheoryMine novelty gift company, which sells the rights to name novel mathematical theorems. A tower of four computer systems is used to generate recursive theories, then to speculate conjectures in those theories and then to prove these conjectures. All stages of the process are entirely automatic. The process guarantees large numbers of sound, novel theorems of some intrinsic merit.
High Excitation Molecular Gas in the Magellanic Clouds
We present the first survey of submillimeter CO 4-3 emission in the
Magellanic Clouds. The survey is comprised of 15 6'x6' maps obtained using the
AST/RO telescope toward the molecular peaks of the Large and Small Magellanic
Clouds. We have used these data to constrain the physical conditions in these
objects, in particular their molecular gas density and temperature. We find
that there are significant amounts of molecular gas associated with most of
these molecular peaks, and that high molecular gas temperatures are pervasive
throughout our sample. We discuss whether this may be due to the low
metallicities and the associated dearth of gas coolants in the Clouds, and
conclude that the present sample is insufficient to assert this effect.Comment: 18 pages, 3 figures, 5 tables. To appear in Ap
Controllable coherent population transfers in superconducting qubits for quantum computing
We propose an approach to coherently transfer populations between selected
quantum states in one- and two-qubit systems by using controllable
Stark-chirped rapid adiabatic passages (SCRAPs). These {\it evolution-time
insensitive} transfers, assisted by easily implementable single-qubit
phase-shift operations, could serve as elementary logic gates for quantum
computing. Specifically, this proposal could be conveniently demonstrated with
existing Josephson phase qubits. Our proposal can find an immediate application
in the readout of these qubits. Indeed, the broken parity symmetries of the
bound states in these artificial "atoms" provide an efficient approach to
design the required adiabatic pulses.Comment: 4 pages, 6 figures. to appear in Physical Review Letter
Mars riometer system
A riometer (relative ionospheric opacity meter) measures
the intensity of cosmic radio noise at the surface of a planet.
When an electromagnetic wave passes through the
ionosphere collisions between charged particles (usually
electrons) and neutral gases remove energy from the wave.
By measuring the received signal intensity at the planet's
surface and comparing it to the expected value (the quietday
curve) a riometer can deduce the absorption
(attenuation) of the trans-ionospheric signal. Thus the
absorption measurements provide an indication of ionisation
changes occurring in the ionosphere.
To avoid the need for orbiting sounders riometers use the
cosmic noise background as a signal source. Earth-based
systems are not subject to the challenging power, volume
and mass restriction that would apply to a riometer for
Mars. Some Earth-based riometers utilise phased-array
antennas in order to provide an imaging capability.UnpublishedVienna - Austria3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeope
Optical Versus Mid-Infrared Spectroscopic Classification of Ultraluminous Infrared Galaxies
The origin of huge infrared luminosities of ultraluminous infrared galaxies
(ULIGs) is still in question. Recently, Genzel et al. made mid-infrared (MIR)
spectroscopy of a large number of ULIGs and found that the major energy source
in them is massive stars formed in the recent starburst activity; i.e.,
70% -- 80% of the sample are predominantly powered by the starburst. However,
it is known that previous optical spectroscopic observations showed that the
majority of ULIGs are classified as Seyferts or LINERs (low-ionization nuclear
emission-line regions). In order to reconcile this difference, we compare types
of emission-line activity for a sample of ULIGs which have been observed in
both optical and MIR. We confirm the results of previous studies that the
majority of ULIGs classified as LINERs based on the optical emission-line
diagnostics turn to be starburst-dominated galaxies based on the MIR ones.
Since the MIR spectroscopy can probe more heavily-reddened, inner parts of the
ULIGs, it is quite unlikely that the inner parts are powered by the starburst
while the outer parts are powered by non-stellar ionization sources. The most
probable resolution of this dilemma is that the optical emission-line nebulae
with the LINER properties are powered predominantly by shock heating driven by
the superwind activity; i.e., a blast wave driven by a collective effect of a
large number of supernovae in the central region of galaxy mergers.Comment: 15 pages, 2 tables, and 3 eps figures. The Astrophysical Journal
(Part 1), in pres
Star formation in the giant HII regions of M101
The molecular components of three giant HII regions (NGC 5461, NGC 5462, NGC
5471) in the galaxy M101 are investigated with new observations from the James
Clerk Maxwell Telescope, the NRAO 12-meter, and the Owens Valley millimeter
array. Of the three HII regions, only NGC 5461 had previously been detected in
CO emission.
We calculate preliminary values for the molecular mass of the GMCs in NGC
5461 by assuming a CO-to-H_2 factor (X factor) and then compare these values
with the virial masses. We conclude that the data in this paper demonstrate for
the first time that the value of X may decrease in regions with intense star
formation.
The molecular mass for the association of clouds in NGC 5461 is approximately
3x10^7 Mo and is accompanied by 1-2 times as much atomic mass. The observed CO
emission in NGC 5461 is an order of magnitude stronger than in NGC 5462, while
it was not possible to detect molecular gas toward NGC 5471 with the JCMT. An
even larger ratio of atomic to molecular gas in NGC 5471 was observed, which
might be attributed to efficient conversion of molecular to atomic gas.
The masses of the individual clouds in NGC 5461, which are gravitationally
bound, cover a range of (2-8) x 10^5 Mo, comparable with the masses of Galactic
giant molecular clouds (GMCs). Higher star forming efficiencies, and not
massive clouds, appear to be the prerequisite for the formation of the large
number of stars whose radiation is required to produce the giant HII regions in
M101.Comment: 32 pages, 5 figures, accepted for publication in the Astrophysical
Journa
KPZ equation in one dimension and line ensembles
For suitably discretized versions of the Kardar-Parisi-Zhang equation in one
space dimension exact scaling functions are available, amongst them the
stationary two-point function. We explain one central piece from the technology
through which such results are obtained, namely the method of line ensembles
with purely entropic repulsion.Comment: Proceedings STATPHYS22, Bangalore, 200
The Mass Function of Super Giant Molecular Complexes and Implications for Forming Young Massive Star Clusters in the Antennae (NGC 4038/39)
We have used previously published observations of the CO emission from the
Antennae (NGC 4038/39) to study the detailed properties of the super giant
molecular complexes with the goal of understanding the formation of young
massive star clusters. Over a mass range from 5E6 to 9E8 solar masses, the
molecular complexes follow a power-law mass function with a slope of -1.4 +/-
0.1, which is very similar to the slope seen at lower masses in molecular
clouds and cloud cores in the Galaxy. Compared to the spiral galaxy M51, which
has a similar surface density and total mass of molecular gas, the Antennae
contain clouds that are an order of magnitude more massive. Many of the
youngest star clusters lie in the gas-rich overlap region, where extinctions as
high as Av~100 imply that the clusters must lie in front of the gas. Combining
data on the young clusters, thermal and nonthermal radio sources, and the
molecular gas suggests that young massive clusters could have formed at a
constant rate in the Antennae over the last 160 Myr and that sufficient gas
exists to sustain this cluster formation rate well into the future. However,
this conclusion requires that a very high fraction of the massive clusters that
form initially in the Antennae do not survive as long as 100 Myr. Finally, we
compare our data with two models for massive star cluster formation and
conclude that the model where young massive star clusters form from dense cores
within the observed super giant molecular complexes is most consistent with our
current understanding of this merging system. (abbreviated)Comment: 40 pages, four figures; accepted for publication in Ap
Models for energy and charge transport and storage in biomolecules
Two models for energy and charge transport and storage in biomolecules are
considered. A model based on the discrete nonlinear Schrodinger equation with
long-range dispersive interactions (LRI's) between base pairs of DNA is offered
for the description of nonlinear dynamics of the DNA molecule. We show that
LRI's are responsible for the existence of an interval of bistability where two
stable stationary states, a narrow, pinned state and a broad, mobile state,
coexist at each value of the total energy. The possibility of controlled
switching between pinned and mobile states is demonstrated. The mechanism could
be important for controlling energy storage and transport in DNA molecules.
Another model is offered for the description of nonlinear excitations in
proteins and other anharmonic biomolecules. We show that in the highly
anharmonic systems a bound state of Davydov and Boussinesq solitons can exist.Comment: 12 pages (latex), 12 figures (ps
- …
