5,069 research outputs found
Reinforced carbon-carbon oxidation behavior in convective and radiative environments
Reinforced carbon-carbon, which is used as thermal protection on the space shuttle orbiter wing leading edges and nose cap, was tested in both radiant and plasma arcjet heating test facilities. The test series was conducted at varying temperatures and pressures. Samples tested in the plasma arcjet facility had consistently higher mass loss than those samples tested in the radiant facility. A method using the mass loss data is suggested for predicting mission mass loss for specific locations on the Orbiter
Solitons in the one-dimensional forest fire model
Fires in the one-dimensional Bak-Chen-Tang forest fire model propagate as
solitons, resembling shocks in Burgers turbulence. The branching of solitons,
creating new fires, is balanced by the pair-wise annihilation of oppositely
moving solitons. Two distinct, diverging length scales appear in the limit
where the growth rate of trees, , vanishes. The width of the solitons, ,
diverges as a power law, , while the average distance between solitons
diverges much faster as .Comment: 4 pages with 2 figures include
Stock mechanics: predicting recession in S&P500, DJIA, and NASDAQ
An original method, assuming potential and kinetic energy for prices and
conservation of their sum is developed for forecasting exchanges. Connections
with power law are shown. Semiempirical applications on S&P500, DJIA, and
NASDAQ predict a coming recession in them. An emerging market, Istanbul Stock
Exchange index ISE-100 is found involving a potential to continue to rise.Comment: 14 pages, 4 figure
Vortex avalanches and self organized criticality in superconducting niobium
In 1993 Tang proposed [1] that vortex avalanches should produce a self
organized critical state in superconductors, but conclusive evidence for this
has heretofore been lacking. In the present paper, we report extensive
micro-Hall probe data from the vortex dynamics in superconducting niobium,
where a broad distribution of avalanche sizes scaling as a power-law for more
than two decades is found. The measurements are combined with magneto-optical
imaging, and show that over a widely varying magnetic landscape the scaling
behaviour does not change, hence establishing that the dynamics of
superconducting vortices is a SOC phenomenon.Comment: 3 pages + 4 figures, a reference added, citation typos fixe
Planetesimal Formation In Self-Gravitating Discs
We study particle dynamics in local two-dimensional simulations of
self-gravitating accretion discs with a simple cooling law. It is well known
that the structure which arises in the gaseous component of the disc due to a
gravitational instability can have a significant effect on the evolution of
dust particles. Previous results using global simulations indicate that spiral
density waves are highly efficient at collecting dust particles, creating
significant local over-densities which may be able to undergo gravitational
collapse. We expand on these findings, using a range of cooling times to mimic
the conditions at a large range of radii within the disc. Here we use the
Pencil Code to solve the 2D local shearing sheet equations for gas on a fixed
grid together with the equations of motion for solids coupled to the gas solely
through aerodynamic drag force. We find that spiral density waves can create
significant enhancements in the surface density of solids, equivalent to 1-10cm
sized particles in a disc following the profiles of Clarke (2009) around a
solar mass star, causing it to reach concentrations several orders of magnitude
larger than the particles mean surface density. We also study the velocity
dispersion of the particles, finding that the spiral structure can result in
the particle velocities becoming highly ordered, having a narrow velocity
dispersion. This implies low relative velocities between particles, which in
turn suggests that collisions are typically low energy, lessening the
likelihood of grain destruction. Both these findings suggest that the density
waves that arise due to gravitational instabilities in the early stages of star
formation provide excellent sites for the formation of large,
planetesimal-sized objects.Comment: 11 pages, 8 figures, accepted for publication in MNRA
Classification of Possible Finite-Time Singularities by Functional Renormalization
Starting from a representation of the early time evolution of a dynamical
system in terms of the polynomial expression of some observable f (t) as a
function of the time variable in some interval 0 < t < T, we investigate how to
extrapolate/forecast in some optimal stability sense the future evolution of
f(t) for time t>T. Using the functional renormalization of Yukalov and Gluzman,
we offer a general classification of the possible regimes that can be defined
based on the sole knowledge of the coefficients of a second-order polynomial
representation of the dynamics. In particular, we investigate the conditions
for the occurence of finite-time singularities from the structure of the time
series, and quantify the critical time and the functional nature of the
singularity when present. We also describe the regimes when a smooth extremum
replaces the singularity and determine its position and amplitude. This extends
previous works by (1) quantifying the stability of the functional
renormalization method more accurately, (2) introducing new global constraints
in terms of moments and (3) going beyond the ``mean-field'' approximation.Comment: Latex document of 18 pages + 7 ps figure
Local threshold field for dendritic instability in superconducting MgB2 films
Using magneto-optical imaging the phenomenon of dendritic flux penetration in
superconducting films was studied. Flux dendrites were abruptly formed in a 300
nm thick film of MgB2 by applying a perpendicular magnetic field. Detailed
measurements of flux density distributions show that there exists a local
threshold field controlling the nucleation and termination of the dendritic
growth. At 4 K the local threshold field is close to 12 mT in this sample,
where the critical current density is 10^7 A/cm^2. The dendritic instability in
thin films is believed to be of thermo-magnetic origin, but the existence of a
local threshold field, and its small value are features that distinctly
contrast the thermo-magnetic instability (flux jumps) in bulk superconductors.Comment: 6 pages, 6 figures, submitted to Phys. Rev.
Vortex microavalanches in superconducting Pb thin films
Local magnetization measurements on 100 nm type-II superconducting Pb thin
films show that flux penetration changes qualitatively with temperature. Small
flux jumps at the lowest temperatures gradually increase in size, then
disappear near T = 0.7Tc. Comparison with other experiments suggests that the
avalanches correspond to dendritic flux protrusions. Reproducibility of the
first flux jumps in a decreasing magnetic field indicates a role for defect
structure in determining avalanches. We also find a temperature-independent
final magnetization after flux jumps, analogous to the angle of repose of a
sandpile.Comment: 6 pages, 5 figure
- …