192 research outputs found

    Energetic Extremes in Aquatic Locomotion by Coral Reef Fishes

    Get PDF
    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1)) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.Funding was provided by the Australian Research Council (to CJF) and the Danish Agency for Science, Technology and Innovation (to JFS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Social familiarity improves fast-start escape performance in schooling fish

    Get PDF
    Using social groups (i.e. schools) of the tropical damselfish Chromis viridis, we test how familiarity through repeated social interactions influences fast-start responses, the primary defensive behaviour in a range of taxa, including fish, sharks, and larval amphibians. We focus on reactivity through response latency and kinematic performance (i.e. agility and propulsion) following a simulated predator attack, while distinguishing between first and subsequent responders (direct response to stimulation versus response triggered by integrated direct and social stimulation, respectively). In familiar schools, first and subsequent responders exhibit shorter latency than unfamiliar individuals, demonstrating that familiarity increases reactivity to direct and, potentially, social stimulation. Further, familiarity modulates kinematic performance in subsequent responders, demonstrated by increased agility and propulsion. These findings demonstrate that the benefits of social recognition and memory may enhance individual fitness through greater survival of predator attacks

    Adapt, move, or die: how will tropical coral reef fishes cope with ocean warming?

    Get PDF
    Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade more than 365 tropical stenothermal fish species have been documented moving pole-ward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally-sensitive coral reef fish, Chromis viridis (Pomacentridae) – to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least six weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope, and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e., 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating pole-ward migration of species

    Thermal acclimation of tropical coral reef fishes to global heat waves

    Get PDF
    As climate-driven heat waves become more frequent and intense, there is increasing urgency to understand how thermally sensitive species are responding. Acute heating events lasting days to months may elicit acclimation responses to improve performance and survival. However, the coordination of acclimation responses remains largely unknown for most stenothermal species. We documented the chronology of 18 metabolic and cardiorespiratory changes that occur in the gills, blood, spleen, and muscles when tropical coral reef fishes are thermally stressed (+3.0°C above ambient). Using representative coral reef fishes (Caesio cuning and Cheilodipterus quinquelineatus) separated by \u3e100 million years of evolution and with stark differences in major life-history characteristics (i.e. lifespan, habitat use, mobility, etc.), we show that exposure duration illicited coordinated responses in 13 tissue and organ systems over 5 weeks. The onset and duration of biomarker responses differed between species, with C. cuning – an active, mobile species – initiating acclimation responses to unavoidable thermal stress within the first week of heat exposure; conversely, C. quinquelineatus – a sessile, territorial species – exhibited comparatively reduced acclimation responses that were delayed through time. Seven biomarkers, including red muscle citrate synthase and lactate dehydrogenase activities, blood glucose and hemoglobin concentrations, spleen somatic index, and gill lamellar perimeter and width, proved critical in evaluating acclimation progression and completion, as these provided consistent evaluation of thermal responses across species

    Habitat complexity influences selection of thermal environment in a common coral reef fish

    Get PDF
    Coral reef species, like most tropical species, are sensitive to increasing environmental temperatures, with many species already living close to their thermal maxima. Ocean warming and the increasing frequency and intensity of marine heatwaves are challenging the persistence of reef-associated species through both direct physiological effects of elevated water temperatures and the degradation and loss of habitat structure following disturbance. Understanding the relative importance of habitat degradation and ocean warming in shaping species distributions is critical in predicting the likely biological effects of global warming. Using an automated shuttle box system, we investigated how habitat complexity influences the selection of thermal environments for a common coral reef damselfish, Chromis atripectoralis. In the absence of any habitat (i.e. control), C. atripectoralis avoided temperatures below 22.9 ± 0.8°C and above 31.9 ± 0.6°C, with a preferred temperature (Tpref) of 28.1 ± 0.9°C. When complex habitat was available, individual C. atripectoralis occupied temperatures down to 4.3°C lower (mean ± SE; threshold: 18.6 ± 0.7°C; Tpref: 18.9 ± 1.0°C) than control fish. Conversely, C. atripectoralis in complex habitats occupied similar upper temperatures as control fish (threshold: 31.7 ± 0.4°C; preference: 28.3 ± 0.7°C). Our results show that the availability of complex habitat can influence the selection of thermal environment by a coral reef fish, but only at temperatures below their thermal preference. The limited scope of C. atripectoralis to occupy warmer environments, even when associated with complex habitat, suggests that habitat restoration efforts in areas that continue to warm may not be effective in retaining populations of C. atripectoralis and similar species. This species may have to move to cooler (e.g. deeper or higher latitude) habitats under predicted future warming. The integration of habitat quality and thermal environment into conservation efforts will be essential to conserve of coral reef fish populations under future ocean warming scenarios

    Extreme environmental conditions reduce coral reef fish biodiversity and productivity

    Get PDF
    Tropical ectotherms are hypothesized to be vulnerable to environmental changes, but cascading effects of organismal tolerances on the assembly and functioning of reef fish communities are largely unknown. Here, we examine differences in organismal traits, assemblage structure, and productivity of cryptobenthic reef fishes between the world’s hottest, most extreme coral reefs in the southern Arabian Gulf and the nearby, but more environmentally benign, Gulf of Oman. We show that assemblages in the Arabian Gulf are half as diverse and less than 25% as abundant as in the Gulf of Oman, despite comparable benthic composition and live coral cover. This pattern appears to be driven by energetic deficiencies caused by responses to environmental extremes and distinct prey resource availability rather than absolute thermal tolerances. As a consequence, production, transfer, and replenishment of biomass through cryptobenthic fish assemblages is greatly reduced on Earth’s hottest coral reefs. Extreme environmental conditions, as predicted for the end of the 21st century, could thus disrupt the community structure and productivity of a critical functional group, independent of live coral loss

    Living in a risky world: the onset and ontogeny of an integrated antipredator phenotype in a coral reef fish

    Get PDF
    Prey individuals with complex life-histories often cannot predict the type of risk environment to which they will be exposed at each of their life stages. Because the level of investment in defences should match local risk conditions, we predict that these individuals should have the ability to modulate the expression of an integrated defensive phenotype, but this switch in expression should occur at key life-history transitions. We manipulated background level of risk in juvenile damselfish for four days following settlement (a key life-history transition) or 10 days post-settlement, and measured a suite of physiological and behavioural variables over 2 weeks. We found that settlement-stage fish exposed to high-risk conditions displayed behavioural and physiological alterations consistent with high-risk phenotypes, which gave them a survival advantage when exposed to predators. These changes were maintained for at least 2 weeks. The same exposure in post-settlement fish failed to elicit a change in some traits, while the expression of other traits disappeared within a week. Our results are consistent with those expected from phenotypic resonance. Expression of antipredator traits may be masked if individuals are not exposed to certain conditions at key ontogenetic stages

    Form factor π0→γ∗+γ∗\pi^0\to \gamma^* +\gamma^* at different photon virtualities

    Full text link
    The π0γγ\pi^0 \gamma\gamma vertex for virtual photons of squared masses q12q_1^2 and q22q_2^2 plays a vital r\^ole in several physical processes; for example for q12<0q_1^2<0, q22<0q_2^2<0, in the two-photon physics reaction e+e−→e+e−π0e^+ e^-\to e^+ e^- \pi^0, and for q12>0q_1^2>0, q22>0q_2^2>0, in the annihilation process e+e−→π0l+l−e^+ e^-\to \pi^0 l^+ l^-. It is also of interest because of its link to the axial anomaly. We suggest a new approach to this problem. We have obtained a closed analytic expression for the vertex in the limit in which at least one of ∣q12∣|q_1^2| and ∣q22∣|q_2^2| is large for arbitrary fixed values of the ratio q12/q22q_1^2/q_2^2. We compare our results with those obtained previously by Brodsky and Lepage. It should be straightforward to test our predictions experimentally.Comment: harvmac tex, 30 pages, 11 figures; references are correcte

    Turbulent flow reduces oxygen consumption in the labriform swimming shiner perch, Cymatogaster aggregata

    Get PDF
    Fish swimming energetics are often measured in laboratory environments which attempt to minimize turbulence, though turbulent flows are common in the natural environment. To test whether the swimming energetics and kinematics of shiner perch Cymatogaster aggregata (a labriform swimmer) were affected by turbulence, two flow conditions were constructed in a swim-tunnel respirometer. A low-turbulence flow was created using a common swim-tunnel respirometry setup with a flow straightener and fine-mesh grid to minimize velocity fluctuations. A high-turbulence flow condition was created by allowing large velocity fluctuations to persist without a flow straightener or fine grid. The two conditions were tested with Particle Image Velocimetry to confirm significantly different turbulence properties throughout a range of mean flow speeds. Oxygen consumption rates of the swimming fish increased with swimming speeds and pectoral fin beat frequencies in both flow conditions. Higher turbulence also caused a greater positional variability in swimming individuals (vs. low-turbulence flow) at medium and high speeds. Surprisingly, fish used less oxygen in high turbulence compared to low-turbulence flow at medium and high swimming speeds. Simultaneous measurements of swimming kinematics indicated that these reductions in oxygen consumption could not be explained by specific known flow-adaptive behaviours such as Kármán-gaiting or entraining. Therefore, fish in high-turbulence flow may take advantage of the high variability in turbulent energy through time. These results suggest that swimming behavior and energetics measured in the lab in straightened flow, typical of standard swimming respirometers, might differ from that of more turbulent, semi-natural flow conditions.PostprintPeer reviewe
    • …
    corecore