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Abstract 25 

Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and 26 

adapt as the primary pathways for species survival under climate change. Here we challenge 27 

this theory. Over the past decade more than 365 tropical stenothermal fish species have been 28 

documented moving pole-ward, away from ocean warming hotspots where temperatures 2-3 29 

°C above long-term annual means can compromise critical physiological processes. We 30 

examined the capacity of a model species - a thermally-sensitive coral reef fish, Chromis 31 

viridis (Pomacentridae) – to use preference behaviour to regulate its body temperature. 32 

Movement could potentially circumvent the physiological stress response associated with 33 

elevated temperatures and may be a strategy relied upon before genetic adaptation can be 34 

effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 35 

°C) for at least six weeks. We compared the relative importance of acclimation temperature to 36 

changes in upper critical thermal limits, aerobic metabolic scope, and thermal preference. 37 

While acclimation temperature positively affected the upper critical thermal limit, neither 38 

aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when 39 

given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish 40 

acclimated to end-of-century predicted temperatures (i.e., 31 or 33 °C) preferentially sought 41 

out cooler temperatures, those equivalent to long-term summer averages in their natural 42 

habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic 43 

scope and body condition across all treatments. Consequently, acclimation can confer 44 

plasticity in some performance traits, but may be an unreliable indicator of the ultimate 45 

survival and distribution of mobile stenothermal species under global warming. Conversely, 46 

thermal preference can arise long before, and remain long after, the harmful effects of 47 

elevated ocean temperatures take hold and may be the primary driver of the escalating pole-48 

ward migration of species. 49 
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Introduction 50 

Over the evolutionary history of vertebrates, adaptation to thermal changes has occurred 51 

at a rate of approximately 1 °C per million years (Quintero & Weins, 2013). As current ocean 52 

temperatures and rates of warming exceed those over the past 420,000 years (Hoegh-53 

Guldberg et al., 2007; Collins et al., 2013), the fundamental biogeographical principle of 54 

“adapt, move, or die” has perhaps never been more relevant. Global climate change is not 55 

only predicted to increase average sea surface temperatures (SSTs) by 2.0-4.8 °C by the end 56 

of the 21st century but also increase the intensity and frequency of transient thermal 57 

fluctuations (Ficke et al., 2007; Ganachaud et al., 2011; Wernberg et al., 2012; Collins et al., 58 

2013; IPCC 2013). Organisms living at extreme latitudes (i.e., near the equator or poles) are 59 

expected to be particularly sensitive to predicted thermal changes because these species are 60 

thought to have evolved within narrow and stable temperature ranges (Huey & Kingsolver, 61 

1993; Tewksbury et al., 2008; Gardiner et al., 2010; Lough, 2012). Consequently, these 62 

species may also be less capable of acclimating and/or adapting to contemporary temperature 63 

changes, particularly over the short time scales predicted with global warming (Pörtner, 2002; 64 

Stillman, 2003; Somero, 2010; Neuheimer et al., 2011; Nguyen et al., 2011; Rummer et al., 65 

2014), highlighting a serious threat to long-term fitness and survival of countless species 66 

unless relocation to more favourable thermal habitats is possible.  67 

Reversible thermal acclimation, which occurs over days to months, usually in response 68 

to daily or seasonal changes, can allow organisms to cope with changes in temperatures by 69 

enhancing important performance traits (Kinne, 1962; Angilletta et al., 2006; Sandblom et al., 70 

2014). Most species examined appear to adopt this strategy. For example, the Columbia River 71 

redband trout (Oncorhynchus mykiss gairdneri) significantly reduces its heat shock response 72 

to repeated thermal stress following six weeks of acclimation (Narum et al., 2013). However, 73 

while acclimation is recognized as a primary driving force for adaptive phenotypic changes 74 
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(Gienapp et al., 2008; Teplitsky et al., 2008; Hoffmann & Sgró, 2011; Culumber & Monks, 75 

2014), acclimation may come at a cost, i.e. may involve detrimental energetic trade-offs 76 

(Angilletta, 2009; Donelson et al., 2011, 2014) or not happen fast enough to keep pace with 77 

the rate of environmental changes (Angilletta, 2009; Chown et al., 2010; Quintero & Weins 78 

2013; Sandblom et al., 2014).  79 

Capacity for acclimation may be extremely limited for stenothermal tropical coral reef 80 

fishes; studies have already shown that temperatures just 2-3 °C above annual summer 81 

maxima can compromise a wide range of life-history traits including swimming, growth, 82 

activity, and reproduction (Munday et al., 2008; Johansen & Jones, 2011; Donelson et al., 83 

2012b; Zarco-Perello et al., 2012; Johansen et al., 2013, 2015; Rummer et al., 2014). These 84 

important traits are supported by the animal’s aerobic metabolic scope (AMS), which is 85 

essentially the capacity to direct energy toward critical tasks beyond that required for basic 86 

maintenance. In principle, AMS is defined as the difference in oxygen consumption rates 87 

(ṀO2) between resting and maximal performance (Fry & Hart, 1948; Pörtner & Farrell, 2008) 88 

and is thought to follow a right skewed, bell-shaped curve with temperature (Pörtner & Knust, 89 

2007). A stenothermal species will typically have the greatest AMS at a particular 90 

temperature (Topt), beyond which AMS declines, perhaps due to cardiorespiratory limitations 91 

that reduce O2 supply to the tissues (Pörtner & Knust, 2007). Transient heating events – for 92 

example, those associated with El Niño – can elevate temperatures beyond the thermal 93 

tolerance of a species and consequently reduce AMS to near zero, causing imminent death as 94 

fish lose the ability to maintain bodily functions (Beitinger et al., 2000; Ospína & Mora, 95 

2004; Pörtner & Knust, 2007).  96 

While an overall loss of AMS is detrimental to a species (Pörtner, 2001, 2002; Pörtner 97 

& Knust, 2007), some physiological processes are likely to be more thermally sensitive than 98 

others and may consequently be impacted at temperatures closer to optimum than those 99 
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tolerated from a whole-animal perspective (see Steinhausen et al., 2008; Casselman et al., 100 

2012; Iftikar & Hickey, 2013; Iftikar et al., 2014). This phenomenon is sometimes interpreted 101 

as the “multiple performances – multiple optima” theorem (see, e.g., Clark et al., 2013). For 102 

instance, the common coral reef damselfish (Acanthochromis polyacanthus) exhibits a 103 

reduction in aerobic scope when reared at 1.5 °C above their summer average temperatures, 104 

but still maintains reproductive output at this temperature, suggesting a mismatch between the 105 

thermal optimum for metabolic enzymes and reproductive hormones (Donelson et al., 2014). 106 

Thus, many populations may be sensitive to relatively small increases in SSTs at some aspect 107 

of their performance, which can jeopardize biological fitness and population sustainability 108 

(Pörtner & Farrell, 2008; Pörtner & Peck, 2010).  109 

Numerous studies have examined the short- and long-term physiological impacts of 110 

elevated SSTs on tropical coral reef fishes, but many species – if not most – are also capable 111 

of behavioural thermoregulation (Casterlin & Reynolds, 1980; Reynolds & Casterlin, 1981; 112 

Angilletta et al., 2006). An organism can behaviourally thermoregulate by moving out of a 113 

challenging thermal habitat (e.g., across a thermocline) and into a different thermal habitat 114 

where temperatures are more optimal (Topt) (Reynolds & Casterlin 1979; Johnson & Kelsch, 115 

1998; Khan & Herbert, 2012). Given that AMS and the associated capacity for movement, 116 

swimming, etc. are maximized at a specific range of body temperatures, individuals that seek 117 

out habitats where this body temperature can be maintained will, in theory, maximize fitness 118 

(Kelsch & Neill, 1990; Johnson & Kelsch, 1998; Angilletta et al., 2002).  119 

Physiological thermal sensitivity and thermoregulatory behaviour appear to be co-120 

adapted (Huey & Bennett, 1987; Angilletta et al., 2002, 2006) as the thermal history that 121 

defines a species’ Topt often determines its preferred temperature range (Kelsch & Neil, 1990; 122 

Johnson & Kelsch, 1998). Therefore, in nature, most species are likely to preferentially 123 

pursue temperatures that coincide with their Topt during a given life stage (Brett, 1971; 124 
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Beitinger & Fitzpatrick, 1979; Jobling, 1981; Pörtner & Knust, 2007; Pörtner & Farrell, 2008; 125 

Payne et al., 2016). Critically, for behavioural thermoregulation to help mitigate the effects of 126 

rapid climate change, evolutionary changes in Topt should also provide a strong selective 127 

pressure for changes in Tpref (Kelsch & Neill, 1990; Angilletta et al., 2002). This inherent 128 

relationship between Topt and Tpref has not previously been examined in thermally-sensitive 129 

species such as coral reef fishes, and it remains uncertain whether phenotypic shifts in 130 

temperature sensitivity of aerobic performance (e.g., see Donelson et al., 2011, 2012a) also 131 

lead to changes in Tpref.  132 

It is critically important to understand the relative roles of acclimation and behavioural 133 

thermoregulation in order to predict how warming ocean temperatures will ultimately impact 134 

fitness and distribution of individual species. As oceans warm, cooler conditions more closely 135 

aligned with a species Topt may be found in deeper aquatic habitats or at higher latitudes, 136 

suggesting that species distribution ranges will shift accordingly (Perry et al., 2005; Booth et 137 

al., 2007; Figueira & Booth, 2010; Wu et al., 2012; Jones et al., 2014). Indeed, more than 365 138 

tropical reef fish species have already been identified to be expanding their latitudinal ranges 139 

pole-ward at a rate of up to 26 km per decade (Figueira & Booth, 2010; Feary et al., 2013; 140 

Nakamura et al., 2013). However, for the numerous other coral reef species that are either 141 

partly or completely reliant on coral reefs for survival, higher latitudes may not provide 142 

suitable habitats. Such species will have to follow the distribution changes of coral and other 143 

benthic flora and fauna that are less mobile than fish species and expected to relocate at a 144 

slower pace, if at all. The survival of such habitat-dependent species may consequently be 145 

predicted by their capacity to acclimate their Topt and Tpref to projected temperatures.   146 

Focussing on a model species – a thermally-sensitive coral reef fish, Chromis viridis 147 

(Pomacentridae) – we examined the coordinated adjustments of Topt and Tpref to elevated 148 

temperatures expected within generational timescales and the propensity of individuals to 149 
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remain or evade elevated temperatures. We tested three hypotheses: (i) the preferred 150 

temperature (Tpref) of a tropical stenothermal coral reef fish will coincide with their optimal 151 

temperature (Topt) for aerobic performance (specifically aerobic scope); (ii) prolonged thermal 152 

acclimation will improve some, but not all aspects of metabolic performance at elevated 153 

temperatures; and (iii) the thermal preference of this stenothermal coral reef fish will be fixed 154 

and a stronger behavioural driver than phenotypic acclimation, causing individuals to move 155 

toward established optimal temperatures. These hypotheses are thus focusing on short 156 

term/localized movements, yet the results could provide explanations for whole animal 157 

responses, including range shifts.  158 

 159 

Materials and methods 160 

Study species, collection, and holding conditions 161 

The model species – a thermally sensitive coral reef fish, the blue-green damselfish, 162 

Chromis viridis – is a representative of one of the most species-rich families (Pomacentridae, 163 

>360 spp.) of coral reef fishes and are known to occupy an array of habitats in both tropical 164 

and subtropical environments around the world. This species is highly abundant and widely 165 

distributed on coral reefs (~27°N to 27°S) at depths of 12m or shallower (Randall et al., 166 

1997). This species is highly site-attached, and at all post-larval life stages, is closely 167 

associated with corals (typically Acropora spp.) that provide shelter from predators and a 168 

nocturnal retreat (Fishelson et al., 1974).  169 

In January 2014, a total of 72 individuals exhibiting adult coloration and of equal body 170 

mass (4.63 ± 1.23g; mean ± SD), were collected using monofilament barrier nets from reef 171 

crest sites around Lizard Island (14° 40’ 08"S, 145° 27’ 34"E) in the northern part of the 172 

Great Barrier Reef, Australia under Marine Parks Permit #G10/33239.1. The annual sea 173 
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surface temperatures (SST) of this area range from 23.5 to 30.0 °C (data averaged monthly 174 

since 1982, summarized in Rummer et al., 2014 and Johansen et al., 2015).  175 

All individuals were transported to the Marine Aquaculture Research Facilities Unit 176 

(MARFU) at James Cook University (JCU) in Townsville, Queensland, Australia and 177 

randomly distributed between six 100 L cylindrical tanks (65 x 40 cm, height x diameter) with 178 

12 individuals per tank. Tanks were maintained under a 12:12 light:dark photoperiod and 179 

continuously supplied with recirculated, filtered, aerated, and UV-sterilized sea water (34 ppt, 180 

28 °C). Fish were fed to satiation twice daily with commercial pellets and hatched Artemia 181 

spp. (NRD 500-800 µM, INVE Aquaculture®, Salt Lake City, USA) and provided with 182 

multi-sized shelters in which to hide. Tanks were cleaned on a daily basis. Then, at least one 183 

week prior to experimentation, each fish was tagged with visible elastomer implanted into the 184 

epaxial muscle or caudal region (Northwest Marine Technology®, Inc., Shaw Island, USA), 185 

which made it possible to identify individuals for repeated measures experimentation. 186 

Throughout the duration of the project, fish were maintained under James Cook University 187 

Animal Ethics Committee regulations (permit: #A2089, approved for this study)  188 

 189 

Temperature treatment 190 

One week following tagging, all tanks were randomly subdivided across six temperature 191 

treatments representing the annual temperature range that this population of C. viridis 192 

experiences near Lizard Island (23, 25, 27 or 29 °C) in addition to two higher temperatures 193 

(31 or 33 °C) corresponding to the 2.1-4.0 °C projected increase in SST by 2100 (Collins et 194 

al., 2013). Temperatures were reduced or increased by 0.5 °C day-1 until target temperatures 195 

were reached. Water for the 29, 31, and 33 °C treatments was heated using 300 W 196 

submersible heaters (JEBO®, Guangdong, China) that were controlled by automated 197 

temperature controllers (N323, NOVUS Automation®, Porto Alegre, Brazil). Water for the 198 
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23, 25, and 27 °C treatments was cooled using external water chillers (HC-130A Hailea®, 199 

Guangdong, China). Temperatures were manually checked three times daily and always 200 

maintained within a range of ± 0.2 °C.  201 

Fish were maintained at each target temperature for a minimum of six weeks prior to 202 

experimentation so that acclimation at the level of metabolism, if any, would be presumed 203 

complete by this time (Nilsson et al., 2010). To determine growth trajectories, all fish were 204 

weighed at the initial point of tagging, following each experiment, and at the conclusion of 205 

the 27-week experimental period. Prior to all experimental trials, each individual was starved 206 

for 24h to ensure a post-absorptive state that maximized energy available for performance 207 

(Niimi & Beamish, 1974; J.L. Rummer, unpublished data). 208 

 209 

Metabolic rates and the scope for aerobic metabolism 210 

Intermittent flow respirometry was used to estimate maximal metabolic rates (MMR), 211 

standard metabolic rates (SMR) and aerobic metabolic scopes (AMR) of eight randomly 212 

selected individuals from each temperature treatment. All protocols followed Steffensen 213 

(1989) and Rummer et al. (2016). The MMR was estimated from the maximal oxygen 214 

consumption rate measured immediately after a fish was exercised by chasing. The SMR was 215 

estimated from the oxygen consumption rate of a fish at rest, and AMS was calculated as the 216 

difference between MMR and SMR (see also Clark et al., 2012, 2013; Roche et al., 2013; 217 

Rummer et al., 2016 for details on these protocols).  218 

Metabolic rates were estimated using well established methodologies and techniques 219 

that all aim at ensuring low levels of systemic interference. In short, each fish was first chased 220 

continuously by hand for 3 min in a 100L circular (65cm x 40cm: height x diameter) 221 

aquarium containing well-aerated and temperature-controlled seawater maintained at the 222 

fish’s treatment temperature. During this time, the experimenter would only touch the tail of 223 
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the fish if it slowed down or stopped swimming. Individuals were considered exhausted when 224 

they became unresponsive to chasing, which always occurred before the end of the 3-min 225 

chase period. The fish was then scooped into a rubber mesh net and maintained out of the 226 

water for 1 min to necessitate anaerobic metabolism (Clark et al., 2013; Roche et al., 2013; 227 

Rummer et al., 2016). Following air exposure, individual fish were immediately placed into 228 

one of eight custom-built cylindrical acrylic respirometry chambers (each ~360 ml in total 229 

volume, 21.6 x 4.6 cm; length x diameter) submerged in a temperature-controlled bath (5000 230 

W heaters, Control Distributions®, Carlton, Australia or HC-1000A chillers, Hailea®, 231 

Guangdong, China, via sump). Each respirometry chamber was sealed within 5 seconds 232 

where after, reductions in O2 concentration in the respirometry chambers were measured for 233 

the following 7-min. The maximal oxygen consumption rate (i.e., MMR) was calculated from 234 

the steepest 1-min slope during this 7-min interval. Then, the respirometry chamber was 235 

flushed with fully oxygenated seawater for 7-min before a new 7-min measuring cycle was 236 

initiated. The fish was maintained in the respirometry chamber for 22-24 h until O2 237 

consumption rates had stabilized and no longer decreased (Rummer et al., 2016). During this 238 

time, each repeat 14-min flush-measuring cycle was controlled by a digital relay timer 239 

(MFRT-1 Multi Function Recycling Timer, Xiamen SUPERPRO Technology Co., Ltd., 240 

Xiamen, Fujian, China) connected to submersible flush pumps (Eheim®, Germany, 200L h-1). 241 

The measurement period was short enough to ensure that O2 within the respirometry chamber 242 

always remained above 80% air saturation, which is important to avoid metabolic changes 243 

associated with hypoxia (Hughes, 1973, Tetens & Lykkeboe, 1985, Boutilier et al., 1988). 244 

The flush period was long enough to ensure oxygen levels returned to 100% air saturation. 245 

Each of the eight respirometry chambers was also connected to its own in-line pump 246 

(Aquapro® AP200LV, 200 L h-1) to continuously recirculate water within the chamber at all 247 

times regardless of flushing cycle, thus ensuring complete mixing and homogenous water 248 
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PO2. All water used for experiments was first sterilized using a 36 W UV filter (Blagdon Pro 249 

UVC 16200®, China) to minimize bacterial growth within the respirometry chambers, but in 250 

addition, all chambers, tubing, and pumps were flushed with chlorinated (10% bleach) 251 

freshwater and sundried for at least 8h every 24-48h. Bacterial respiration within the 252 

chambers (i.e., the drop in O2 concentration within an empty chamber) was quantified in each 253 

chamber prior to and after each trial but, because of the regular cleaning, never exceeded 10% 254 

of ṀO2 (rest) of the fish. During all trials, each respirometry chamber was partly covered using 255 

a cylinder of black plastic with a 2 x 12 cm window. This setup allowed light to enter the 256 

chamber but prevented fish from being disturbed via external visual stimuli. 257 

The O2 concentrations (temperature and barometric pressure compensated) in each 258 

respirometry chamber were measured using a Firesting Optical Oxygen Meter (two four-259 

channel units, Pyro Science e. K.®, Aachen, Germany) and associated manufacturer’s 260 

software (via PC computer) at a rate of 0.5 Hz and saved as text files. After each trial, raw 261 

Firesting text files were imported into Lab Chart version 6.1.3 (AD Instruments®, Colorado 262 

Springs, CO, USA) for analysis. The ṀO2 in mg O2 kg-1 h-1 at each time point over the 22-263 

24h trial was calculated based on the volume of the respirometry chamber, volume of fish, 264 

and mass of fish following equations of Bushnell et al., (1994) and Schurmann and Steffensen 265 

(1997). Specifically, maximal metabolic rate estimated from the first measuring period as 266 

describe above. The remaining ~94 measuring periods were used to estimate SMR based on 267 

the “mean of the leftmost normal distribution” method (MLND) of Chabot et al., (2016), 268 

which is understood to be a rigorous and accurate way to estimate SMR (see Svendsen et al., 269 

2016). In short, this method detects the bimodal normal distribution of oxygen consumption 270 

rates over the 22-24h recovery period and assigns the peak of the leftmost distribution curve 271 

as SMR.  272 
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Only slopes with R2 ≥ 0.90 were used in order to reduce the impact of systemic 273 

variations in O2 measurements (Svendsen et al., 2016). The proportional background O2 274 

consumption rate (measured as O2 depletion in the empty respirometry chambers before and 275 

after each trial, assumed linear) was subtracted from each ṀO2 measurement. Temperature 276 

quotients (Q10) were calculated according to Clarke and Johnston (1999) to evaluate the level 277 

of temperature dependence of SMR at the higher end of the thermal range. 278 

 279 

Critical thermal maxima 280 

Upper critical thermal limits (i.e., CTMax) were determined for 40 randomly selected fish 281 

– specifically, 8 fish from the 23 °C treatment, 8 from 25 °C, 7 from 27 °C, 6 from 29 °C, 7 282 

from 31 °C, and 4 from 33 °C – using critical thermal methodology (CTM; Beitinger et al., 283 

2000). The low sample size at 33 °C was due to low survival rates at this temperature (see 284 

discussion). Experiments were performed using four 3-L containers (each holding one 285 

individual) suspended within a 100-L water bath. Containers were pierced on all sides, 286 

allowing seawater to flow through readily, and each container also contained an air stone to 287 

ensure sufficient aeration. The water bath was provided with a continuous supply of clean, 288 

aerated, and UV-filtered seawater, which was heated (5000 W, Control Distributions®, 289 

Australia) or chilled (HC-1000A, Hailea®, China) to the fish’s respective treatment 290 

temperature prior to commencing experimentation. To ensure sufficient mixing, two pumps 291 

(WH-500, Weipro®, Guangdong, China) were placed on the bottom of the water bath. Pilot 292 

trials confirmed that temperatures remained the same between all four 3-L containers 293 

throughout experimentation. After being placed in their respective containers, the four fish 294 

were left to habituate to the containers for approximately 15 min., after which time, water 295 

temperature was increased by 0.28 ±0.03 °C min-1 until fish lost equilibrium. Loss of 296 

equilibrium (LOE) has been previously defined as when a fish loses its inability to right itself 297 
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(see Beitinger et al., 2000). Upon LOE, each fish was quickly removed from its respective 298 

container using a mesh net and placed into a separate aquarium to recover at its original 299 

treatment temperature. The temperature at which each fish reached LOE was recorded in each 300 

container using a digital thermometer (Type T C26 (temperature resolution: 0.1 °C), 301 

Comark®, Norfolk, United Kingdom). 302 

 303 

Temperature preference 304 

The preferred temperature (Tpref) of 48 individual fish from each temperature treatment 305 

(i.e., 23, 25, 27, 29, 31 and 33 °C) was determined using a custom-designed two-chamber 306 

shuttlebox system (developed by J.F. Steffensen and described in detail in Nay et al., 2015, 307 

but see also Schurmann et al., 1991; Schurmann & Steffensen, 1994; Petersen & Steffensen, 308 

2003). This setup allows a fish to use movement to control the temperature of its water and 309 

therefore its body temperature (i.e., preferred temperature; Tpref). In brief, the system 310 

consisted of a “hot” chamber and a “cold” chamber, each made from white PVC walls and a 311 

transparent Plexiglas bottom (ø35 cm). A 10 cm x 5 cm opening in the wall joined the two 312 

cylindrical chambers (i.e., like a figure-eight), and the fish was able to swim freely between 313 

the two chambers. The temperature differential between the two chambers was always 314 

maintained at 1.5-2 °C (using two submersible pumps, WH-500, Weipro®, Yongcheng 315 

Aquarium, China), which ensured that the fish could detect a temperature difference when 316 

selecting between the two chambers (J.F. Steffensen, personal observation). When the fish 317 

entered the “hot” chamber, the temperature of both chambers would increase at a rate of 6 °C 318 

h-1 until the fish moved to the “cold” chamber, which would be 1.5-2 °C cooler. While the 319 

fish was in the “cold” chamber, the temperature of both chambers would cool at a rate of 6 °C 320 

h-1 until the fish moved back to the “hot” chamber, which was 1.5-2 °C warmer. By 321 
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swimming back and forth between the two chambers, the fish could effectively control the 322 

temperature of its environment and thus its own body temperature.  323 

The temperatures for each cylindrical chamber were maintained by pumping in water 324 

(480 L h-1, pump HX-6510, Guangdong, China) from corresponding external buffer tanks 325 

(ø10 cm), which then passively returned from each chamber to its corresponding buffer tank. 326 

Inlets and outlets in each chamber were constructed to ensure water flowed in a clockwise 327 

direction in one chamber and a counter-clockwise direction in the other chamber, which 328 

prevented unwanted mixing of water between the “hot” and the “cold” chambers in the 329 

connecting wall opening. The temperatures of the buffer tanks were controlled by pumping 330 

water at a rate of 420 L h-1 (WH-500, Weipro®, Yongcheng Aquarium, Guangdong, China) 331 

through stainless steel spirals from the buffer tanks into cooling and heating reservoirs, and 332 

back. The reservoirs were either heated to 45 °C (5000W heater, Control Distributions®, 333 

Carlton, Australia) or externally chilled to 5 °C (HC-130A, HC-1000A, Hailea®, Guangdong, 334 

China and 1/3 hp Aqua One Arctic, Aqua One®, Southampton, UK). The water level in all 335 

compartments of the system was ~ 20 cm (total system volume of ~42 L), and the entire setup 336 

was shielded with black plastic sheeting to protect fish from external visual stimuli while still 337 

maintaining 12:12 light:dark photoperiod.  338 

During each trial, temperatures within the “hot” and the “cold” chambers were 339 

continuously recorded (5 Hz) using inline thermocouple sensors mounted along the inside 340 

chamber walls. The temperature sensors were connected to temperature readers (PR-5714, PR 341 

Electronics®, Rønde, Denmark) and a computerized software system. Above the shuttlebox 342 

setup, a mirror angled downward at 45° allowed video monitoring of fish movements via a 343 

video camera (SONY® HDR-XR100E) mounted on the opposite wall (4.75 m distance). 344 

Infrared lights mounted below the transparent Plexiglas bottoms were used to illuminate the 345 

chambers from below to create a detectable contrast between the fish and its surroundings. A 346 
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PC video frame-grabber (USB 2.0 DVD maker®) transmitted the video signal from the digital 347 

video camera to a laptop. Then, by using position analyzer software (LoliTrack, Loligo 348 

Systems®, Tjele, Denmark), the position of the fish was continuously tracked, thus allowing 349 

the custom-designed software (Labtech Notebook) to automatically heat or cool the two 350 

chambers based on the real-time movement of the fish (for further details, see Schurmann et 351 

al., 1991; Schurmann & Steffensen, 1994). During the night, a small lamp provided a level of 352 

light similar to full moon on the reef, which ensured that fish could continue to navigate 353 

between the two chambers.  354 

The length of time necessary for fish to learn the shuttlebox system and select Tpref was 355 

determined via a series of 48 h pilot trials using fish from two of the temperature treatment 356 

groups (25 and 31°C). As a result, a 24 h experimental period was chosen because Tpref 357 

stabilized within 24 h in all pilot trials and did not change with longer exposure time (paired t-358 

test; P25°C = 0.253, P31°C = 0.742).  359 

Following the 24 h fasting period, individual fish were placed into the shuttlebox 360 

system set to their respective treatment temperature for 1.5 h to habituate to the aquaria 361 

without experiencing any change in water temperature. Movement-controlled heating/cooling 362 

patterns commenced at 1830 each evening and continued until 1630 the following day. To 363 

preclude the potential effects of specific dynamic action on Tpref (Wallman & Bennett, 2006) 364 

no food was provided 24h prior to or during experimentation. For the night time periods 365 

(1830 until 0630 the following day), reservoir temperatures were set so that the shuttlebox 366 

would not continue to heat or cool the fish past lethal limits (A. Habary, personal 367 

observation). This meant that if the fish did not move appropriately between the two 368 

chambers at night, the shuttlebox system would not inadvertently kill the fish while the 369 

computer waited for the fish to move. During daylight hours (from 0630 – 1630), however, 370 

when the observer was able to regularly monitor the fish, reservoir temperatures could exceed 371 
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the fish’s lethal thermal limits. Following each trial, all tanks were rinsed with clean seawater 372 

to eliminate olfactory cues from the previous fish. After half of all trials were completed for 373 

each treatment temperature, the “hot” and “cold” chambers were switched to eliminate spatial 374 

bias. 375 

The Tpref data were analyzed by averaging the selected temperature range for every 10 376 

minutes during the last 5 h of each trial for each fish. Means were then compared between the 377 

fish from each treatment temperature (similar to the methodology described by Killen 2014). 378 

If the tracking software was unable to detect the fish movement for more than one minute 379 

(e.g., if the fish was positioned too close to the chamber wall), then the missing time period 380 

was excluded from analysis in addition to the same amount of data following the missing time 381 

period (Nay et al., 2015). During the time period when the tracking software could not detect 382 

the fish, the system would continue to increase or decrease the temperature. Removing these 383 

missing data as well as the following time period allowed for the system to stabilize back to 384 

the original point where the fish was ‘lost’ and to compensate for any change in temperature 385 

caused by the system’s inability to track the fish.  386 

 387 

Data analyses 388 

The SMR, MMR, AMS and the effect of body mass were all analyzed using general 389 

linear models (GLM) with SMR, MMR, and AMS as dependent variables, treatment as a 390 

categorical predictor, and body mass as a continuous predictor. The CTMax data were analyzed 391 

using a one-way ANOVA followed by the Tukey HSD test, while mean body mass values 392 

within and between temperature treatments were compared using a one-way ANOVA and, 393 

when necessary, Holm-Sidak post hoc tests. The final Tpref values between groups were 394 

analyzed using a nonparametric Kruskal Wallis test, and differences between treatments were 395 

compared using the Tukey HSD test. Growth data (mass loss/gain over the 27-week project) 396 
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was analyzed using a one-way ANOVA and, when necessary, Holm-Sidak post hoc tests. 397 

Linearity, normality and homoscedasticity were verified for all data sets using residual-fit 398 

plots. When necessary, variables (SMR, MMR and AMS) were log10 transformed for use in 399 

models. The level of significance was α = 0.05 for all tests, and all statistical analyses were 400 

performed using Statistica v. 12 (Statsoft Inc., Dell®, Tulsa, Okla., USA). 401 

Results 402 

Metabolic rates and aerobic metabolic scope 403 

Treatment temperature did not significantly influence aerobic metabolic scope (AMS) 404 

(Fig. 1b; GLM, F5, 47 = 2.25, P = 0.06) despite a 31.2% and 30.2% reduction in AMS between 405 

fish maintained at 33 °C versus fish maintained at 27 or 29 °C, respectively. 406 

By contrast, treatment temperature did significantly influence estimates of both standard 407 

metabolic rate (SMR) (GLM, F5, 47 = 5.89, P < 0.01) and maximum metabolic rate (MMR) 408 

(Fig. 1a; GLM, F5, 47 = 2.85, P = 0.02). Here, SMR increased by ~86% from 23 °C to 31 °C 409 

before decreasing again at 33 °C (Fig. 1a), and MMR increased by up to 36.4% between 23 410 

and 29 °C. Yet temperature only had an overall effect on MMR as there were no statistically 411 

significant differences between individual treatments (Fig. 1a). The temperature quotient 412 

(Q10) calculated for SMR between 29 and 31 °C was 2.06 but fell to 0.97 for SMR estimates 413 

between 29 and 33 °C and 0.46 between 31 and 33 °C.  414 

 415 

Critical thermal maxima 416 

There was a significant positive effect of treatment temperature on CTMax (F = 42.55, P 417 

< 0.01). Specifically, CTMax increased by approximately 0.5 °C for every 1 °C increase in 418 

treatment temperature (Fig. 2a, regression equation: CTMax = 0.45x + 25.2, x = °C, R2 = 0.97) 419 

with average CTMax values ranging from 35.4 ± 0.2 °C (mean ± SEM) for fish maintained at 420 

23 °C to 39.2 ± 0.2 °C (mean ± SEM) for fish maintained at 31 °C (Fig. 2a).  421 
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Importantly, fish from the 33 °C treatment reached a mean CTMax of 40.5 °C, but were 422 

unable to recover from this exposure and died within 24 h following experimentation. One of 423 

the criteria, i.e., the ability of an animal to escape from conditions that will lead to its death, 424 

for CTM (see discussion in Beitinger et al., 2000) was therefore not met, and consequently 425 

these data were excluded from analyses however still depicted in Fig. 2a for reference. 426 

 427 

Temperature preference 428 

Treatment temperature had a significant effect on the average Tpref of C. viridis when 429 

compared across all treatments (mean Tpref = 28.9 °C, Kruskal-Wallis, H = 15.7, P < 0. 01; 430 

Fig. 2b). However, only the Tpref of the 23 °C and 33 °C treatment groups differed from one 431 

another (Tpref = 26.1 °C ± 0.96 and 30.4 °C ± 0.37, means ± SEM, respectively, P = 0.04; Fig. 432 

2b), and neither the Tpref of fish at 23 °C nor the Tpref of fish at 33 °C were statistically distinct 433 

from the Tpref of fish from 25, 27, 29, or 31 °C (P = 0.31). The overall mean Tpref for all 434 

treatment groups was 28.9 °C, which coincided with the optimum temperature (Topt) for AMS 435 

(27-29 °C) (Figs. 1b and 2b).  436 

 437 

Growth 438 

Temperature treatment had a significant overall effect on body mass (Fig. 3, P<0.01). 439 

Specifically, fish that were maintained at temperatures they would normally experience in the 440 

wild (i.e., 23, 25, 27, or 29 °C) had increased their body mass by 15.4, 16.7, 19.2 and 15.7%, 441 

respectively after 27 weeks (P = 0.04). By comparison, fish maintained at 31 °C showed no 442 

change in body mass (P < 0.05), while fish maintained at 33 °C lost, on average, 30% of their 443 

body mass (P = 0.02).  444 

 445 

 446 
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Discussion 447 

In a time of rapid global warming, the capacity for acclimation has been hailed as the 448 

primary pathway for species survival. Here, we highlight another mechanism by 449 

demonstrating that a model species – a thermally-sensitive coral reef fish, Chromis viridis 450 

(Pomacentridae) – appears to lack the ability to acclimate at the level of metabolic rate, but 451 

instead maintains a behavioural preference and actively seeks out habitat temperatures that 452 

maximize metabolic performance and growth, even after prolonged exposure to water 453 

temperatures outside of this range. This is the first time thermal preference for lower ambient 454 

temperatures has been shown to persist after prolonged acclimation to elevated temperatures, 455 

thus providing one explanation for the rapid pole-ward expansion of thermally sensitive 456 

species worldwide (Feary et al. 2013). 457 

Modifying behaviour to select preferred temperatures can be one of the initial responses 458 

an organism has to elevated temperatures (Olla et al., 1978; Sloman & McNeil, 2012). 459 

Multiple factors can potentially modify temperature preferences (e.g., sex and individual 460 

variation, see Wallman & Bennett, 2006; Podrabsky et al., 2008; Biro et al., 2010; Killen, 461 

2014), and here we show that a narrow thermal range for optimal metabolic performance 462 

confers an equally narrow range of preferred temperature (see also Angilletta et al., 2006). 463 

Despite a minimum of six weeks of acclimation to one of six temperatures spanning the total 464 

yearly temperature range experienced by these individuals in the wild as well as global 465 

warming projections, most individuals maintained a preference for the exact same 466 

temperature range found in their natural habitat during the summer months. This is likely the 467 

result of strong evolutionary selection for and adaptation to a narrow and stable thermal range 468 

(Johnson & Kelsch, 1998; Angilletta et al., 2002, 2006). The thermal range for which species 469 

are adapted indicates the temperature range that maximizes fitness and thus promotes optimal 470 

growth, reproduction, swimming, etc. (Jobling, 1981; Kelsch & Neil, 1990). Here, the mean 471 
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preferred temperature across all treatments (28.9 °C) coincided with the optimal thermal 472 

range for aerobic metabolic scope (27-29 °C) and growth (29 °C) for fish used in this study, 473 

and the temperature range that has been reported to optimize growth in other tropical coral 474 

reef fishes (Zarco-Perello et al., 2012, see also Payne et al., 2016).  475 

While a combination of performance metrics, such as aerobic scope, CTMax, and thermal 476 

preference may be used to explain broader fitness consequences and population movement 477 

patterns, taken alone, each individual metric may not provide enough insight into how an 478 

organism will cope with long-term warming. Similar to previous studies, we found a 479 

significant increase in CTMax following long-term exposure to elevated temperatures. 480 

However, despite the prolonged exposure to 33 °C, C. viridis was not able to tolerate rapid or 481 

transient heating events. That is, those individuals were not able to recover from the CTMax 482 

trials, indicating that long-term exposure to temperatures projected for the near future (33 °C) 483 

could prove detrimental, as compensatory mechanisms associated with recovery from heat 484 

stress may be exhausted. Consequently, the increase in CTMax only provided a short-term 485 

advantage but no clear benefit to the long-term thermal tolerance of individuals. Likewise, the 486 

lack of significant change in AMS in fish maintained between 27 °C and 33 °C could lead to 487 

the erroneous conclusion that this species is highly thermally tolerant to a 3 °C increase in 488 

temperatures, even though critical changes to whole animal fitness may occur in the wild. 489 

Specifically, the relatively minor, non-significant, reductions in aerobic scope seen here, may 490 

pose a serious physiological threat through the cascading effects of thermal stress on 491 

thermoregulatory behaviour (Kearney et al., 2009; Sinervo et al., 2010; sensu Du Plessis et 492 

al., 2012). That is, while some ectotherms buffer the impacts of elevated temperature by 493 

temporarily sheltering in thermal refugia, this requires time and energetic expenses that could 494 

have been used for foraging and other important metabolic functions such as growth (Kearney 495 

et al., 2009; Sinervo et al., 2010). Consequently, there may be severe fitness consequences for 496 
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individuals despite a lack of impact on a single physiological process or metabolic 497 

performance measure (Clark et al., 2013; Donelson et al., 2014).  498 

Although most tropical reef fishes are thought to have some capacity for acclimation 499 

and adaptation (Donelson et al., 2011, 2014, Grenchik et al., 2013), any insufficiencies could 500 

render many tropical stenotherms vulnerable to temperature changes projected to occur within 501 

the next 50-100 years. Several studies have shown improvements in some metabolic 502 

performance traits following prolonged acclimation, but this was accompanied by reductions 503 

in other fitness attributes, such as reproductive output (Angilletta, 2009; Donelson et al., 504 

2011, 2014). In this study, the critical thermal maxima of C. viridis increased proportionally 505 

with acclimation temperature, but the associated SMR plateaued at 33 °C. A 10 °C increase in 506 

body temperature typically requires 2-3 times more energy (Q10 = 2-3, Clarke & Johnston, 507 

1999) in order to maintain standard metabolic rate functions (SMR), and the Q10 of 0.97 at 33 508 

°C for C. viridis indicates that these fish were unable to fully compensate for the increase in 509 

temperature, presumably at a cost to basic maintenance. Accordingly, the body mass of 510 

individuals maintained at 33 °C decreased by a staggering 30% during the 27 week trial. 511 

Energetic requirements of different organs and tissues vary according to their mass and 512 

metabolic requirements (Crnokrak & Roff, 2002; Darveau et al., 2002; Crispin & White, 513 

2013) causing tissue-specific physiological processes to contribute differently to the animal’s 514 

total energetic requirements. For example, 35% of the variation in basal metabolic expenses 515 

in some ectotherms can be attributed to differences in heart and liver masses (Garland, 1984). 516 

Consequently, even though some tissues/organs keep consuming more energy, denaturation or 517 

suppression (Nilsson & Renshaw, 2004; Richards, 2011) of highly O2 -consuming organs 518 

and/or tissue may still lead to a lower mass-adjusted O2 consumption rate and hence SMR, as 519 

observed here. This would be considered a strong sign of unsustainable thermal effects on 520 

physiological processes and overall fitness. As a result, the reduction in growth concurrent 521 
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with inadequate increases in SMR at elevated temperatures may have serious impacts on the 522 

overall fitness of this species and be a strong motivation for relocating to more favourable 523 

thermal environments.  524 

Ultimately, the potential for successful relocation of coral reef fish species such as C. 525 

viridis, representing the versatile Pomacentridae family, may depend on their level of coral 526 

dependence. Relocation is facilitated or constrained not only by physiologically-mediated 527 

thermal preferences, but also by the species’ versatility in life history characteristics (Wilson 528 

et al., 2010; Figueira & Booth, 2010; Nakamura et al., 2013) such as inter- and intra-specific 529 

competition, resource and habitat requirements, and dispersal and/or recruitment potentials 530 

(Feary et al., 2013; Harborne, 2013; Nakamura et al., 2013; Seth et al., 2013). For the 90 % of 531 

coral reef fish species (and the majority of pomacentrid species) that are only partly 532 

dependent of coral reefs (Jones et al., 2004), relocation ultimately depends on each species’ 533 

level of coral dependence in terms of, for example, food and refugia (Nakamura et al., 2013). 534 

Among the pomacentrids, only 16 % of the species are obliged to coral reefs (Jones et al., 535 

2004; Cole et al., 2008; Coker et al., 2014) in terms of habitat (Coker et al., 2014) or feeding 536 

(e.g., corallivory; Cole et al., 2008). The remaining pomacentrids are capable of multi-species 537 

cohabitation (McCormick & Makey; 1997; Nadler et al., 2016), suggesting redistribution may 538 

not only be plausible but also a viable option for these species. Theoretically, obligate coral 539 

associated species may be more limited in their capacity for rapid relocation pole-ward (Ben-540 

Tzvi et al., 2008; Feary et al., 2013). However, recent studies have determined that many 541 

reef-forming coral species and associated coral reef fishes are also moving toward cooler 542 

regions (Yamano et al., 2011; Feary et al., 2013) at rates of up to 14 km year-1, perhaps 543 

establishing the foundation for less vagrant species.  544 

The pomacentrid, C. viridis, shows little or no capacity for acclimation at the level of 545 

aerobic metabolic performance or growth when maintained for extended periods of time to 546 
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temperatures projected for tropical coral reefs by 2100. Rather, we determined that this 547 

species can use movement to behaviourally seek out lower, potentially less thermally-stressful 548 

temperatures, those that coincide with present day temperatures from where this fish was 549 

collected. Temperature-mediated movement has not previously been evaluated as a primary 550 

pathway for coping with rapid ocean warming but is likely to have serious implications for 551 

the long-term sustainability of tropical fish populations in their current home ranges, 552 

particularly when thermal adaptation is not possible. Critically, the impact of behavioural 553 

thermoregulation is likely to be rapidly growing as more and more species are found shifting 554 

their distribution ranges toward areas with more hospitable temperatures. Indeed, current 555 

evidence suggests that 365 different species across 55 families of tropical fishes are either on 556 

the move or have already undergone bio-geographical redistributions or range shifts as a 557 

result of climate change and more specifically ocean warming (Figueira & Booth, 2010; Feary 558 

et al., 2013; Nakamura et al., 2013). If our findings for a model coral reef fish species from 559 

the species-rich family, Pomacentridae, hold true for other coral reef fishes, then increases in 560 

ocean temperatures relative to the thermal preference of species may become the primary 561 

driving factor for changing coral reef biodiversity. Tropical coral reef fishes are of global 562 

ecological and economical importance (Depczynski et al., 2007; Hopkins et al., 2011; Cinner, 563 

2014) and require effective management and conservation strategies. However, our capacity 564 

to implement these strategies will hinge on our understanding of temperature-mediated 565 

changes in physiological performance, resilience, diversity, and distribution over the long-566 

term. 567 

  568 
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Figure 1 909 

The effect of treatment temperature on O2 consumption rates as estimates of standard 910 

metabolic rates (SMR, green circles; panel (a)), maximum metabolic rates (MMR, white 911 

circles; panel (a)), and aerobic metabolic scope (AMS = MMR-SMR, blue triangles; panel 912 

(b)) on C. viridis. Values are means ± SEM. Letters demarcate statistically significant 913 

differences between fish from the different temperature treatments. NS indicates no 914 

significant differences. 915 

Figure 2 916 

(a) The effect of treatment temperature on the upper critical thermal limits (CTMax) of C. 917 

viridis. The solid triangle indicates the CTMax for fish from the 33 °C treatment temperature; 918 

however, no fish from this group survived longer than 24 h following the experiment and 919 

were thus excluded from statistical analyses. Values are means ± SEM. Letters demarcate 920 

statistically significant differences between fish from the different temperature treatments. (b) 921 

The effect of treatment temperature on the preferred temperature (Tpref) of C. viridis. The 922 

dashed, bold line represents the mean Tpref across all treatments (28.9 °C). The line of 923 

equality (dotted line) represents the Tpref if it were to exactly match the treatment 924 

temperature. Values are means ± SEM. Letters demarcate statistically significant differences 925 

between fish from the different temperature treatments. 926 

Figure 3 927 

Body mass of C. viridis across all temperature treatments prior to experimentation (white 928 

bars) and following 27 weeks exposure to treatment temperatures (shaded bars). Values are 929 

means ± SEM. Letters demarcate statistically significant differences between fish from the 930 

different temperature treatments. Asterisks demarcate differences between body mass at the 931 

start of the study and after 27 weeks within each treatment temperature. 932 
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