19 research outputs found

    Conceptual design framework for laminated structural battery composites

    Get PDF
    The structural battery composite is a class of composite materials with ability to provide mechanical integrity in a structural system while simultaneously store electrical energy (i.e. work as a battery). In this paper a framework to estimate the mechanical and electrical performance of laminated structural battery composites is proposed. The mechanical performance of the battery composite laminate is assessed by estimating the in-plane elastic properties of the laminate using Classical Laminate Theory. The electrical performance is assessed estimating the specific capacity and energy density of the component. The developed framework is applied on an A4 sized structural battery composite demonstrator, as part of the Clean Sky 2 project SORCERER [1] to demonstrate the capabilities of the framework. The design process for the demonstrator is presented and mechanical and electrical performance metrics are estimated for three laminate configurations, one promoting structural performance, one promoting electrical performance and one intermediate. As the material provides both load carrying and electrical energy storage capabilities, the laminate configuration can be alternated to provide suitable performance based on the purpose of the component

    Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries

    Get PDF
    In electric transportation there is an inherent need to store electrical energy while maintaining a low vehicle weight. One way to decrease the weight of the structure is to use composite materials. However, the electrical energy storage in today\u27s systems contributes to a large portion of the total weight of a vehicle. Structural batteries have been suggested as a possible route to reduce this weight. A structural battery is a material that carries mechanical loads and simultaneously stores electrical energy and can be realized using carbon fibers both as a primary load carrying material and as an active battery electrode. However, as yet, no proof of a system-wide improvement by using such structural batteries has been demonstrated. In this study we make a structural battery composite lamina from carbon fibers with a structural battery electrolyte matrix, and we show that this material provides system weight benefits. The results show that it is possible to make weight reductions in electric vehicles by using structural batteries

    A screen-printing method for manufacturing of current collectors for structural batteries

    Get PDF
    Structural carbon fibre composite batteries are a type of multifunctional batteries that combine the energy storage capability of a battery with the load-carrying ability of a structural material. To extract the current from the structural battery cell, current collectors are needed. However, current collectors are expensive, hard to connect to the electrode material and add mass to the system. Further, attaching the current collector to the carbon fibre electrode must not affect the electrochemical properties negatively or requires time-consuming, manual steps. This paper presents a proof-of-concept method for screen-printing of current collectors for structural carbon fibre composite batteries using silver conductive paste. Current collectors are screen-printed directly on spread carbon fibre tows and a polycarbonate carrier film. Experimental results show that the electrochemical performance of carbon fibre vs lithium metal half-cells with the screen-printed collectors is similar to reference half-cells using metal foil and silver adhered metal-foil collectors. The screen-printed current collectors fulfil the requirements for electrical conductivity, adhesion to the fibres and flexible handling of the fibre electrode. The screen-printing process is highly automatable and allows for cost-efficient upscaling to large scale manufacturing of arbitrary and complex current collector shapes. Hence, the screen-printing process shows a promising route to realization of high performing current collectors in structural batteries and potentially in other types of energy storage solutions

    A structural battery and its multifunctional performance

    Get PDF
    Engineering materials that can store electrical energy in structural load paths can revolutionize lightweight design across transport modes. Stiff and strong batteries that use solid-state electrolytes and resilient electrodes and separators are generally lacking. Herein, a structural battery composite with unprecedented multifunctional performance is demonstrated, featuring an energy density of 24 Wh kg-1 and an elastic modulus of 25 GPa and tensile strength exceeding 300 MPa. The structural battery is made from multifunctional constituents, where reinforcing carbon fibers (CFs) act as electrode and current collector. A structural electrolyte is used for load transfer and ion transport and a glass fiber fabric separates the CF electrode from an aluminum foil-supported lithium–iron–phosphate positive electrode. Equipped with these materials, lighter electrical cars, aircraft, and consumer goods can be pursued

    Light Weight Suspension System for KTH Research Concept Vehicle : DESIGN AND CONSTRUCTION OF A COMPOSITE SUSPENSION SYSTEM WITH FOCUS ON APPLICATION IN KTH RESEARCH CONCEPT VEHICLE WITH ANALYSIS OF FUTURE SOLUTIONS SUITABLE FOR THE AUTOMOTIVE INDUSTRY.

    No full text
    I detta projekt undersöks konstruktionen av en transversell bladfjäder föranvändning i en bil, byggd i kompositmaterial. En transversell bladfjäder är en annanlösning för att implementera det som traditionellt är spiralfjäder i bilenhjulupphängning. Istället används en fjäder som fungerar genom balkböjning. Detfinns sedan tidigare flera olika lösningar på hur sen sådan bladfjäder kan fungera,däribland lösningar där bladfjädern sträcker sig från sida till sida på bilden ochdärmed kallas transversell bladfjäder. Denna lösningen har även den extraegenskapen att bladfjädern fungerar som en krängningshämmare för bilen.Den transversella bladfjädern konstrueras för en forskningsbil på Kungliga TekniskaHögskolan (KTH). Denna bil är ett konceptfordon konstruerat för att efterlikna enliten stadsbil och väger ca. 600 . Hjulupphängningen på denna bil är av typenDouble Wishbone med spiralfjädrar och dämpare. Hjulupphängningen ärkonstruerad modulärt och är exakt densamma för fram och bak hjulupphängning,och ursprungliga fästpunkter på bilen hålls intakta. Konstruktionen av dentransversella bladfjädern görs för att efterlikna de egenskaper som det ursprungligasystemet för hjulupphängningen.Analytisk optimering används primärt för att hitta en första lösning, sedanimplementeras denna lösning i FEM-programvara för att vidare undersöka dessegenskaper och konstruktion. Detta leder fram till en slutgiltig lösning som uppfyllerkravspecifikationerna, varvid en fullskalig transversell bladfjäder byggs och prövasom den uppfyller kravspecifikationerna.In this project, the design of a transverse leaf spring for an automotive vehicle isinvestigated. A transverse leaf spring is a concept for implementing the traditionalcoil spring for the vehicle, into a spring operating through beam bending. There aredifferent constructions and layouts of said leaf spring developed previously. Onesolution is where the spring is spanning from one side to the other of the vehicle,making it a transverse leaf spring. This solution has an extra gain; it is also providingan anti-roll bar action to the ride characteristics of the vehicle.The design of the transverse leaf spring is made for an automotive research vehicle atRoyal Institute of Technology (KTH). This vehicle is designed to represent a smallcity vehicle, weighing approximately 600 . The design of the original suspensionsystem is of the type Double Wishbone with push rod and coil springs with damper.The system is modular and exactly the same for the front and rear of the vehicle.Original mounting positions on the vehicle are to be kept intact. The design of thetransverse leaf spring is made in order to mimic the exact characteristics of theoriginal suspension system.First analytical optimizations are made in order to find an initial solution. This designis then implemented in FEM-software in order to further investigate thecharacteristics and design. A final design is found that is fulfilling the requirementsand a full scale version of the transverse leaf spring is built and examined withregards to its fulfilment of requirements

    Light Weight Suspension System for KTH Research Concept Vehicle : DESIGN AND CONSTRUCTION OF A COMPOSITE SUSPENSION SYSTEM WITH FOCUS ON APPLICATION IN KTH RESEARCH CONCEPT VEHICLE WITH ANALYSIS OF FUTURE SOLUTIONS SUITABLE FOR THE AUTOMOTIVE INDUSTRY.

    No full text
    I detta projekt undersöks konstruktionen av en transversell bladfjäder föranvändning i en bil, byggd i kompositmaterial. En transversell bladfjäder är en annanlösning för att implementera det som traditionellt är spiralfjäder i bilenhjulupphängning. Istället används en fjäder som fungerar genom balkböjning. Detfinns sedan tidigare flera olika lösningar på hur sen sådan bladfjäder kan fungera,däribland lösningar där bladfjädern sträcker sig från sida till sida på bilden ochdärmed kallas transversell bladfjäder. Denna lösningen har även den extraegenskapen att bladfjädern fungerar som en krängningshämmare för bilen.Den transversella bladfjädern konstrueras för en forskningsbil på Kungliga TekniskaHögskolan (KTH). Denna bil är ett konceptfordon konstruerat för att efterlikna enliten stadsbil och väger ca. 600 . Hjulupphängningen på denna bil är av typenDouble Wishbone med spiralfjädrar och dämpare. Hjulupphängningen ärkonstruerad modulärt och är exakt densamma för fram och bak hjulupphängning,och ursprungliga fästpunkter på bilen hålls intakta. Konstruktionen av dentransversella bladfjädern görs för att efterlikna de egenskaper som det ursprungligasystemet för hjulupphängningen.Analytisk optimering används primärt för att hitta en första lösning, sedanimplementeras denna lösning i FEM-programvara för att vidare undersöka dessegenskaper och konstruktion. Detta leder fram till en slutgiltig lösning som uppfyllerkravspecifikationerna, varvid en fullskalig transversell bladfjäder byggs och prövasom den uppfyller kravspecifikationerna.In this project, the design of a transverse leaf spring for an automotive vehicle isinvestigated. A transverse leaf spring is a concept for implementing the traditionalcoil spring for the vehicle, into a spring operating through beam bending. There aredifferent constructions and layouts of said leaf spring developed previously. Onesolution is where the spring is spanning from one side to the other of the vehicle,making it a transverse leaf spring. This solution has an extra gain; it is also providingan anti-roll bar action to the ride characteristics of the vehicle.The design of the transverse leaf spring is made for an automotive research vehicle atRoyal Institute of Technology (KTH). This vehicle is designed to represent a smallcity vehicle, weighing approximately 600 . The design of the original suspensionsystem is of the type Double Wishbone with push rod and coil springs with damper.The system is modular and exactly the same for the front and rear of the vehicle.Original mounting positions on the vehicle are to be kept intact. The design of thetransverse leaf spring is made in order to mimic the exact characteristics of theoriginal suspension system.First analytical optimizations are made in order to find an initial solution. This designis then implemented in FEM-software in order to further investigate thecharacteristics and design. A final design is found that is fulfilling the requirementsand a full scale version of the transverse leaf spring is built and examined withregards to its fulfilment of requirements

    Exploring structural carbon fiber composites for mass-less energy and actuation

    No full text
    The energy consumption in transport is today a large contributor to global greenhouse emissions. One way of reducing these emissions is by electrification, which is an ongoing journey for the vehicle industry. The aeronautical industry has started investigations but are limited by the relatively low specific energy of batteries. One way to improve the specific energy of batteries is by making them multifunctional by combining them with other functions of the vehicle. When the battery is combined with a structural material, the resulting material is referred to as a structural battery. This structural battery ultimately performs the fundamental function of mechanical rigidity and the battery function provides almost mass-less energy. The idea of structural batteries has been around for a while, but its actual construction has not yet been understood. This thesis is focused on exploring the design and implications of structural batteries made from carbon fiber composites. The first section is focused on the construction of the structural battery. Specifically investigating a structural carbon fiber negative electrode with regards to its manufacturing, electrochemical properties and mechanical properties. The results show that the construction of a negative electrode for structural batteries is achievable. The next section is using the findings from the first section in exploring the implications of implementing a structural battery into vehicles with regards to weight saving and life cycle characteristics. The findings show that the structural batteries have the potential to decrease both weight and life cycle burdens. The last section presents the use of the structural carbon fiber negative electrodes as a morphing material controlled by applied electrical power. The morphing deformations are large and stationary when power is removed but the morphing rate of the material is limited. Additionally, it is solid state, lightweight and has an elastic modulus higher than aluminum with large morphing deformations. The long-term outcomes of a thesis are hard to predict, but the findings herein conclude that the technology of structural batteries have the potential to disrupt energy storage in transportation, as well as traditional actuation and morphing technologies.QC 20200512</p

    Exploring structural carbon fiber composites for mass-less energy and actuation

    No full text
    The energy consumption in transport is today a large contributor to global greenhouse emissions. One way of reducing these emissions is by electrification, which is an ongoing journey for the vehicle industry. The aeronautical industry has started investigations but are limited by the relatively low specific energy of batteries. One way to improve the specific energy of batteries is by making them multifunctional by combining them with other functions of the vehicle. When the battery is combined with a structural material, the resulting material is referred to as a structural battery. This structural battery ultimately performs the fundamental function of mechanical rigidity and the battery function provides almost mass-less energy. The idea of structural batteries has been around for a while, but its actual construction has not yet been understood. This thesis is focused on exploring the design and implications of structural batteries made from carbon fiber composites. The first section is focused on the construction of the structural battery. Specifically investigating a structural carbon fiber negative electrode with regards to its manufacturing, electrochemical properties and mechanical properties. The results show that the construction of a negative electrode for structural batteries is achievable. The next section is using the findings from the first section in exploring the implications of implementing a structural battery into vehicles with regards to weight saving and life cycle characteristics. The findings show that the structural batteries have the potential to decrease both weight and life cycle burdens. The last section presents the use of the structural carbon fiber negative electrodes as a morphing material controlled by applied electrical power. The morphing deformations are large and stationary when power is removed but the morphing rate of the material is limited. Additionally, it is solid state, lightweight and has an elastic modulus higher than aluminum with large morphing deformations. The long-term outcomes of a thesis are hard to predict, but the findings herein conclude that the technology of structural batteries have the potential to disrupt energy storage in transportation, as well as traditional actuation and morphing technologies.QC 20200512</p

    Light Weight Suspension System for KTH Research Concept Vehicle : DESIGN AND CONSTRUCTION OF A COMPOSITE SUSPENSION SYSTEM WITH FOCUS ON APPLICATION IN KTH RESEARCH CONCEPT VEHICLE WITH ANALYSIS OF FUTURE SOLUTIONS SUITABLE FOR THE AUTOMOTIVE INDUSTRY.

    No full text
    I detta projekt undersöks konstruktionen av en transversell bladfjäder föranvändning i en bil, byggd i kompositmaterial. En transversell bladfjäder är en annanlösning för att implementera det som traditionellt är spiralfjäder i bilenhjulupphängning. Istället används en fjäder som fungerar genom balkböjning. Detfinns sedan tidigare flera olika lösningar på hur sen sådan bladfjäder kan fungera,däribland lösningar där bladfjädern sträcker sig från sida till sida på bilden ochdärmed kallas transversell bladfjäder. Denna lösningen har även den extraegenskapen att bladfjädern fungerar som en krängningshämmare för bilen.Den transversella bladfjädern konstrueras för en forskningsbil på Kungliga TekniskaHögskolan (KTH). Denna bil är ett konceptfordon konstruerat för att efterlikna enliten stadsbil och väger ca. 600 . Hjulupphängningen på denna bil är av typenDouble Wishbone med spiralfjädrar och dämpare. Hjulupphängningen ärkonstruerad modulärt och är exakt densamma för fram och bak hjulupphängning,och ursprungliga fästpunkter på bilen hålls intakta. Konstruktionen av dentransversella bladfjädern görs för att efterlikna de egenskaper som det ursprungligasystemet för hjulupphängningen.Analytisk optimering används primärt för att hitta en första lösning, sedanimplementeras denna lösning i FEM-programvara för att vidare undersöka dessegenskaper och konstruktion. Detta leder fram till en slutgiltig lösning som uppfyllerkravspecifikationerna, varvid en fullskalig transversell bladfjäder byggs och prövasom den uppfyller kravspecifikationerna.In this project, the design of a transverse leaf spring for an automotive vehicle isinvestigated. A transverse leaf spring is a concept for implementing the traditionalcoil spring for the vehicle, into a spring operating through beam bending. There aredifferent constructions and layouts of said leaf spring developed previously. Onesolution is where the spring is spanning from one side to the other of the vehicle,making it a transverse leaf spring. This solution has an extra gain; it is also providingan anti-roll bar action to the ride characteristics of the vehicle.The design of the transverse leaf spring is made for an automotive research vehicle atRoyal Institute of Technology (KTH). This vehicle is designed to represent a smallcity vehicle, weighing approximately 600 . The design of the original suspensionsystem is of the type Double Wishbone with push rod and coil springs with damper.The system is modular and exactly the same for the front and rear of the vehicle.Original mounting positions on the vehicle are to be kept intact. The design of thetransverse leaf spring is made in order to mimic the exact characteristics of theoriginal suspension system.First analytical optimizations are made in order to find an initial solution. This designis then implemented in FEM-software in order to further investigate thecharacteristics and design. A final design is found that is fulfilling the requirementsand a full scale version of the transverse leaf spring is built and examined withregards to its fulfilment of requirements
    corecore