85 research outputs found
Neuromorphic Learning towards Nano Second Precision
Temporal coding is one approach to representing information in spiking neural
networks. An example of its application is the location of sounds by barn owls
that requires especially precise temporal coding. Dependent upon the azimuthal
angle, the arrival times of sound signals are shifted between both ears. In
order to deter- mine these interaural time differences, the phase difference of
the signals is measured. We implemented this biologically inspired network on a
neuromorphic hardware system and demonstrate spike-timing dependent plasticity
on an analog, highly accelerated hardware substrate. Our neuromorphic
implementation enables the resolution of time differences of less than 50 ns.
On-chip Hebbian learning mechanisms select inputs from a pool of neurons which
code for the same sound frequency. Hence, noise caused by different synaptic
delays across these inputs is reduced. Furthermore, learning compensates for
variations on neuronal and synaptic parameters caused by device mismatch
intrinsic to the neuromorphic substrate.Comment: 7 pages, 7 figures, presented at IJCNN 2013 in Dallas, TX, USA. IJCNN
2013. Corrected version with updated STDP curves IJCNN 201
The effect of heterogeneity on decorrelation mechanisms in spiking neural networks: a neuromorphic-hardware study
High-level brain function such as memory, classification or reasoning can be
realized by means of recurrent networks of simplified model neurons. Analog
neuromorphic hardware constitutes a fast and energy efficient substrate for the
implementation of such neural computing architectures in technical applications
and neuroscientific research. The functional performance of neural networks is
often critically dependent on the level of correlations in the neural activity.
In finite networks, correlations are typically inevitable due to shared
presynaptic input. Recent theoretical studies have shown that inhibitory
feedback, abundant in biological neural networks, can actively suppress these
shared-input correlations and thereby enable neurons to fire nearly
independently. For networks of spiking neurons, the decorrelating effect of
inhibitory feedback has so far been explicitly demonstrated only for
homogeneous networks of neurons with linear sub-threshold dynamics. Theory,
however, suggests that the effect is a general phenomenon, present in any
system with sufficient inhibitory feedback, irrespective of the details of the
network structure or the neuronal and synaptic properties. Here, we investigate
the effect of network heterogeneity on correlations in sparse, random networks
of inhibitory neurons with non-linear, conductance-based synapses. Emulations
of these networks on the analog neuromorphic hardware system Spikey allow us to
test the efficiency of decorrelation by inhibitory feedback in the presence of
hardware-specific heterogeneities. The configurability of the hardware
substrate enables us to modulate the extent of heterogeneity in a systematic
manner. We selectively study the effects of shared input and recurrent
connections on correlations in membrane potentials and spike trains. Our
results confirm ...Comment: 20 pages, 10 figures, supplement
Addition of histamine to subcutaneously injected Plasmodium berghei sporozoites increases the parasite liver load and could facilitate whole-parasite vaccination
Background: Whole-parasite immunization remains the benchmark in malaria vaccine development. A major bottleneck in the translation of whole-parasite immunization towards routine vaccination is the mode of administration, since high degrees of protection are currently only achieved by intravenous, and not by intradermal or subcutaneous injection of viable parasites. It is known that only a small proportion of subcutaneously administered parasites reach the subsequent liver stage and low parasite liver load was shown to be associated with low protective efficacy. The objective of this analysis was to evaluate whether the liver load following subcutaneous parasite injection could be augmented by co-administration of pro-inflammatory or anti-coagulatory drugs.
Methods: In the C57BL/6 Plasmodium berghei ANKA model, the clinical outcome (time to patent blood stage infection and survival) and relative parasite liver load was assessed in mice infected by subcutaneous or intramuscular sporozoite (SPZ) administration in the presence or absence of histamine and heparin supplementation in comparison to intravenously administered SPZ. In addition, a vaccination experiment was carried out to assess the protective efficacy of an improved, histamine-supplemented subcutaneous immunization regimen.
Results: The parasite liver load following subcutaneous SPZ administration can be significantly increased by co-administration of histamine and heparin. A dose-dependent relation between parasite liver load and histamine dosage was observed. However, despite a relatively high parasite liver load, the protective efficacy of histamine-supplemented subcutaneous immunization remains inferior as compared to intravenous SPZ administration.
Conclusions: Histamine supplementation might facilitate the future development of a non-intravenous whole-parasite vaccine. Further investigations are needed to reveal the effect of histamine supplementation and subcutaneous SPZ administration on the acquisition of protective immunity
Continuous oral chloroquine as a novel route for Plasmodium prophylaxis and cure in experimental murine models
<p>Abstract</p> <p>Background</p> <p>Chloroquine (CQ) is utilized as both cure and prophylaxis to <it>Plasmodium </it>infection. In animal studies, CQ administration to experimental animals is via intraperitoneal (i.p.) injection of a single dose that varies from daily to several times per week. Such daily administration can be distressing to the animals and provoke aggressive behaviors that may affect the immune responses of the animal and interfere with data read-outs.</p> <p>Findings</p> <p>We describe a novel, viable and efficacious prophylactic and curative administration route whereby chloroquine is continuously supplied in the drinking water to experimental animals. The prophylactic effect is robust and the curative effect against patent blood stage infection comparable to the traditional route of i.p. administration. Continuous drinking water administration may decrease animal stress responses and thus improve the reliability of experimental data.</p
Performance of the Alere i RSV assay for point-of-care detection of respiratory syncytial virus in children
Background: Respiratory syncytial virus (RSV) is the most important cause of severe acute respiratory tract infection in young children. Alere i RSV is a novel molecular rapid test which identifies respiratory syncytial virus in less than 13 min.
Methods: We evaluated the clinical performance of the Alere i RSV assay in a pediatric point-of-care setting during winter season 2016 / 2017. Test results from 518 nasopharyngeal swab samples were compared to a real-time reverse transcription PCR reference standard.
Results: The overall sensitivity and specificity of the Alere i RSV test assay was 93% (CI95 89% – 96%) and 96% (CI95 93% – 98%), respectively. Alere i RSV performed well in children of all age groups. An optimal sensitivity of 98% (CI95 94% - 100%) and specificity of 96% (CI95 90% - 99%) was obtained in children < 6 months. In children ≥ 2 years, sensitivity and specificity remained at 87% (CI95 73% – 96%) and 98% (CI95 92% – 100%), respectively. False negative Alere i RSV test results mostly occurred in samples with low viral load (mean CT value 31.1; CI95 29.6 – 32.6). The Alere i RSV assay is easy to use and can be operated after minimal initial training. Test results are available within 13 min, with most RSV positive samples being identified after approximately 5 min.
Conclusion: The Alere i RSV assay has the potential to facilitate the detection of RSV in pediatric point-of-care settings
Construct-A-Vis : exploring the free-form visualization processes of children
Funding: UK EPSRC and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 251654672 – TRR 161 (Project C01).Building data analysis skills is part of modern elementary school curricula. Recent research has explored how to facilitate children's understanding of visual data representations through completion exercises which highlight links between concrete and abstract mappings. This approach scaffolds visualization activities by presenting a target visualization to children. But how can we engage children in more free-form visual data mapping exercises that are driven by their own mapping ideas? How can we scaffold a creative exploration of visualization techniques and mapping possibilities? We present Construct-A-Vis, a tablet-based tool designed to explore the feasibility of free-form and constructive visualization activities with elementary school children. Construct-A-Vis provides adjustable levels of scaffolding visual mapping processes. It can be used by children individually or as part of collaborative activities. Findings from a study with elementary school children using Construct-A-Vis individually and in pairs highlight the potential of this free-form constructive approach, as visible in children's diverse visualization outcomes and their critical engagement with the data and mapping processes. Based on our study findings we contribute insights into the design of free-form visualization tools for children, including the role of tool-based scaffolding mechanisms and shared interactions to guide visualization activities with children.PostprintPeer reviewe
Newborn screening by tandem mass spectrometry for glutaric aciduria type 1: a cost-effectiveness analysis
Background: Glutaric aciduria type I (GA-I) is a rare metabolic disorder caused by inherited deficiency of glutaryl-CoA dehydrogenase. Despite high prognostic relevance of early diagnosis and start of metabolic treatment as well as an additional cost saving potential later in life, only a limited number of countries recommend newborn screening for GA-I. So far only limited data is available enabling health care decision makers to evaluate whether investing into GA-I screening represents value for money. The aim of our study was therefore to assess the cost-effectiveness of newborn screening for GA-I by tandem mass spectrometry (MS/MS) compared to a scenario where GA-I is not included in the MS/MS screening panel. Methods: We assessed the cost-effectiveness of newborn screening for GA-I against the alternative of not including GA-I in MS/MS screening. A Markov model was developed simulating the clinical course of screened and unscreened newborns within different time horizons of 20 and 70 years. Monte Carlo simulation based probabilistic sensitivity analysis was used to determine the probability of GA-I screening representing a cost-effective therapeutic strategy. Results: Within a 20 year time horizon, GA-I screening averts approximately 3.7 DALYs (95% CI 2.9 – 4.5) and about one life year is gained (95% CI 0.7 – 1.4) per 100,000 neonates screened initially . Moreover, the screening programme saves a total of around 30,682 Euro (95% CI 14,343 to 49,176 Euro) per 100,000 screened neonates over a 20 year time horizon. Conclusion: Within the limitations of the present study, extending pre-existing MS/MS newborn screening programmes by GA-I represents a highly cost-effective diagnostic strategy when assessed under conditions comparable to the German health care system
Pattern representation and recognition with accelerated analog neuromorphic systems
Despite being originally inspired by the central nervous system, artificial
neural networks have diverged from their biological archetypes as they have
been remodeled to fit particular tasks. In this paper, we review several
possibilites to reverse map these architectures to biologically more realistic
spiking networks with the aim of emulating them on fast, low-power neuromorphic
hardware. Since many of these devices employ analog components, which cannot be
perfectly controlled, finding ways to compensate for the resulting effects
represents a key challenge. Here, we discuss three different strategies to
address this problem: the addition of auxiliary network components for
stabilizing activity, the utilization of inherently robust architectures and a
training method for hardware-emulated networks that functions without perfect
knowledge of the system's dynamics and parameters. For all three scenarios, we
corroborate our theoretical considerations with experimental results on
accelerated analog neuromorphic platforms.Comment: accepted at ISCAS 201
A succinate/SUCNR1-brush cell defense program in the tracheal epithelium
Host-derived succinate accumulates in the airways during bacterial infection. Here, we show that luminal succinate activates murine tracheal brush (tuft) cells through a signaling cascade involving the succinate receptor 1 (SUCNR1), phospholipase Cβ2, and the cation channel transient receptor potential channel subfamily M member 5 (TRPM5). Stimulated brush cells then trigger a long-range Ca2+ wave spreading radially over the tracheal epithelium through a sequential signaling process. First, brush cells release acetylcholine, which excites nearby cells via muscarinic acetylcholine receptors. From there, the Ca2+ wave propagates through gap junction signaling, reaching also distant ciliated and secretory cells. These effector cells translate activation into enhanced ciliary activity and Cl− secretion, which are synergistic in boosting mucociliary clearance, the major innate defense mechanism of the airways. Our data establish tracheal brush cells as a central hub in triggering a global epithelial defense program in response to a danger-associated metabolite
- …