210 research outputs found

    Mooring systems with submerged buoys: influence of buoy geometry and modelling fidelity

    Get PDF
    Mooring systems often make use of submerged buoys (SBs) in order to make the moorings compliant. In this paper we present the dynamic effects of changing the buoy geometry or the buoy model fidelity on the mooring system response. Three cylindrical SBs with increasing slenderness (height/diameter) are studied for a mooring leg with two polyester ropes and a SB. The results show a large impact of SB geometry on the mooring dynamics. A larger height/diameter ratio (with preserved mass and buoyancy) is shown to be beneficial as it gives both smaller tension force magnitudes and, more importantly, avoids slack-snap occurrence in the upper cable. We further present a comparison between four numerical methods for SB dynamics: (i) a high-fidelity model using computational fluid dynamics (CFD); (ii) the Morison equation with slender body drag force approximation using numerical quadrature; (iii) the Morison equation with an independent evaluation of the fluid drag due to translation and rotation; and (iv) a translating Morison model which simulates a vertical cylinder in three degrees of freedom with no rotation. All methods are used together with a high-order finite element mooring dynamics solver. The results show that the translating method is inadequate to model this mooring configuration. The remaining three methods agree moderately well, but the Morison formulations give larger motions and higher tensions compared to the CFD results. We show that the quadrature drag model is better suited to model the drag moment on SBs than the independent model, and that the improvement increases with increasing slenderness of the buoy. The uncertainty, sensitivity and importance of the hydrodynamic coefficients of the buoy are discussed and examined by a regression analysis from the CFD data

    Influence of bending stiffness on snap loads in marine cables: a study using a high-order discontinuous Galerkin method

    Get PDF
    Marine cables are primarily designed to support axial loads. The effect of bending stiffness on the cable response is therefore often neglected in numerical analysis. However, in low-tension applications such as umbilical modelling of ROVs or during slack events, the bending forces may affect the slack regime dynamics of the cable. In this paper, we present the implementation of bending stiffness as a rotation-free, nested local Discontinuous Galerkin (DG) method into an existing Lax–Friedrichs-type solver for cable dynamics based on an hp-adaptive DG method. Numerical verification shows exponential convergence of order P and P + 1 for odd and even polynomial orders, respectively. Validation of a swinging cable shows good comparison with experimental data, and the importance of bending stiffness is demonstrated. Snap load events in a deep water tether are compared with field-test data. The bending forces affect the low-tension response for shorter lengths of tether (200–500 m), which results in an increasing snap load magnitude for increasing bending stiffness. It is shown that the nested LDG method works well for computing bending effects in marine cables

    High-order mooring simulations for increased accuracy in wave energy applications

    Get PDF
    The prevailing simulation technique for floating wave energy converters (WECs) is to use the linear hydrodynamics in convolution form to solve for the motion of the floating structure. This allows for very fast time domain simulations with the possibility to include non-linear reaction forces from e.g. moorings and power take off (PTO). Although its accuracy for very large motion amplitudes is debated (Yu and Li 2015, Palm 2015), it is the best method available to make long-term simulations of WEC response. Brown and Mavrakos (1999) showed a big difference in mooring response depending on how the mooring cables of marine structures where modeled. As WECs are subjected to large motions in relatively shallow water, the differences between different methods are pronounced compared to traditional oil and gas structures, and the uncertainty in model choice is still to be properly quantified. We present a coupling between the open source code WECSim (NREL), and a finite element code for mooring cable dynamics that specializes in accurately capturing snap loads. The in-house mooring model is based on the discontinuous Galerkin method and provides very low numerical diffusion of load propagation. We also present a comparison between our mooring model and using the native, lumped mass mooring model of WECSim, which is a standard method for mooring dynamics. The effect of changing mooring model is evaluated in terms of structural WEC response, peak, mooring load and its potential impact on the fatigue damage

    Dynamically Scaled Model Experiment of a Mooring Cable

    Get PDF
    The dynamic response of mooring cables for marine structures is scale-dependent, and perfect dynamic similitude between full-scale prototypes and small-scale physical model tests is difficult to achieve. The best possible scaling is here sought by means of a specific set of dimensionless parameters, and the model accuracy is also evaluated by two alternative sets of dimensionless parameters. A special feature of the presented experiment is that a chain was scaled to have correct propagation celerity for longitudinal elastic waves, thus providing perfect geometrical and dynamic scaling in vacuum, which is unique. The scaling error due to incorrect Reynolds number seemed to be of minor importance. The 33 m experimental chain could then be considered a scaled 76 mm stud chain with the length 1240 m, i.e., at the length scale of 1:37.6. Due to the correct elastic scale, the physical model was able to reproduce the effect of snatch loads giving rise to tensional shock waves propagating along the cable. The results from the experiment were used to validate the newly developed cable-dynamics code, MooDy, which utilises a discontinuous Galerkin FEM formulation. The validation of MooDy proved to be successful for the presented experiments. The experimental data is made available here for validation of other numerical codes by publishing digitised time series of two of the experiments

    CFD simulations of a passively controlled point absorber

    Get PDF

    Facilitating Large-Amplitude Motions of Wave Energy Converters in OpenFOAM by a modified Mesh Morphing Approach

    Get PDF
    High-fidelity simulations using computational fluid dynamics (CFD) for wave-body interaction are becoming increasingly common and important for wave energy converter (WEC) design. The open source finite volume toolbox OpenFOAM is one of the most frequently used platforms for wave energy. There are currently two ways to account for moving bodies in OpenFOAM: (i) mesh morphing, where the mesh deforms around the body; and (ii) an overset mesh method where a separate body mesh moves on top of a background mesh. Mesh morphing is computationally efficient but may introduce highly deformed cells for combinations of large translational and rotational motions. The overset method allows for arbitrarily large body motions and retains the quality of the mesh. However, it comes with a substantial increase in computational cost and possible loss of energy conservation due to the interpolation. In this paper we present a straightforward extension of the spherical linear interpolation (SLERP) based mesh morphing algorithm that increase the stability range of the method. The mesh deformation is allowed to be interpolated independently for different modes of motion, which facilitates tailored mesh motion simulations. The paper details the implementation of the method and evaluates its performance with computational examples of a cylinder with a moonpool. The examples show that the modified mesh morphing approach handles large motions well and provides a cost effective alternative to overset mesh for survival conditions

    Towards Ultra-High Resolution Fibre Tract Mapping of the Human Brain – Registration of Polarised Light Images and Reorientation of Fibre Vectors

    Get PDF
    Polarised light imaging (PLI) utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-μm-thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography

    ADHD 24/7:Circadian clock genes, chronotherapy and sleep/wake cycle insufficiencies in ADHD

    Get PDF
    Objectives: The current paper addresses the evidence for circadian clock characteristics associated with attention-deficit hyperactivity disorder (ADHD), and possible therapeutic approaches based on chronomodulation through bright light (BL) therapy. Methods: We review the data reported in ADHD on genetic risk factors for phase-delayed circadian rhythms and on the role of photic input in circadian re-alignment. Results: Single nucleotide polymorphisms in circadian genes were recently associated with core ADHD symptoms, increased evening-orientation and frequent sleep problems. Additionally, alterations in exposure and response to photic input may underlie circadian problems in ADHD. BL therapy was shown to be effective for re-alignment of circadian physiology toward morningness, reducing sleep disturbances and bringing overall improvement in ADHD symptoms. The susceptibility of the circadian system to phase shift by timed BL exposure may have broad cost-effective potential implications for the treatment of ADHD. Conclusions: We conclude that further research of circadian function in ADHD should focus on detection of genetic markers (e.g., using human skin fibroblasts) and development of BL-based therapeutic interventions

    Assessment of Scale Effects, Viscous Forces and Induced Drag on a Point-AbsorbingWave Energy Converter by CFD Simulations

    Get PDF
    This paper analyses the nonlinear forces on a moored point-absorbing wave energy converter (WEC) in resonance at prototype scale (1:1) and at model scale (1:16). Three simulation types were used: Reynolds Averaged Navier–Stokes (RANS), Euler and the linear radiation-diffraction method (linear). Results show that when the wave steepness is doubled, the response reduction is: (i) 3% due to the nonlinear mooring response and the Froude–Krylov force; (ii) 1–4% due to viscous forces; and (iii) 18–19% due to induced drag and non-linear added mass and radiation forces. The effect of the induced drag is shown to be largely scale-independent. It is caused by local pressure variations due to vortex generation below the body, which reduce the total pressure force on the hull.Euler simulations are shown to be scale-independent and the scale effects of the WEC are limited by the purely viscous contribution (1–4%) for the two waves studied. We recommend that experimental\ua0model scale test campaigns of WECs should be accompanied by RANS simulations, and the analysis complemented by scale-independent Euler simulations to quantify the scale-dependent part of the nonlinear effects
    corecore