

CFD Simulations of a Passively Controlled Point Absorber

Minghao Wu, Weizhi Wang, Johannes Palm and Claes Eskilsson Department of Shipping and Marine Technology Chalmers University of Technology

Research Objectives

- Point absorber WEC designed
 by CorPower
- CFD simulation motion in regular waves
- O PTO
- Passive control system

Passive control system – WaveSpring

Hydrodynamics Modellings

BEM

- Small amplitude assumption
- Small motion assumption
- Viscous term simplified
- Overtopping not captured
- Some 2nd order effects included (eg. drift, QTF etc)
- Nonlinear source term included in time-domain simulation
- FAST computation

CFD

- Nonlinear effects 'All-inclusive'
- ✤ Single fluid approximation
- Multiphase through (often) VOF
- ☼ Turbulence models
- ▷ SLOW COMPUTATIONS

Physical Experiments

- Wave basin in Nantes
- 1:16 scale buoy
- PTO Linear damper
- ☼ No mooring linear spring
- ⇔ WaveSpring

Hals et al (EWTEC 2015)

Numerical modellings

Method

- ORANS
- O VOF
- NWT
- Fluid to floating-body interaction

Solver

- OpenFOAM package
- Fluid domain *interDyMFoam*
- 6DOF sixDoFRigidBodyMotion
- Pre-tension mooring , PTO, WaveSpring in-house coding
- ☆ Wave generation *waves2Foam*

Numerical settings - domain

Numerical settings - grids

Surge Decay

- ☼ 10M cells
- Initial horizontal offset 0.1m
- ⇔ Linearized damping ratio
- ☼ Average periods

Results	Ехр	CFD	Rel. error
Average period, T (s)	3.98	4.03	1.26%
Damping ratio	0.00955	0.0875	-8.32%

With linear damper PTO

- O 10M cells
- Regular waves T=2.25s H=15.6cm H/L=0.02
- Sensitive to
 pre-tension (3%)

.

time(s)

time(s)

PTO only

Results (Average double amplitude)	Ехр	CFD	Rel. error
Surge (m)	0.3206	0.3037	-5.271%
Heave (m)	0.0771	0.0850	10.246%
Pitch (deg)	5.4426	4.7536	-12.659%
PTO-mooring system force (N)	153.64	154.41	0.503%

Hals et al (EWTEC 2015)

With WaveSpring and linear damper PTO

× +

O 10M cells

× ¥

Regular waves
 T=2.25s
 H=15.6cm
 H/L=0.02

z -

Sensitive to pre-tension (3%) ¥ ¥

time(s)

PTO+WaveSpring

PTO + WaveSpring

Results	Experimental	Numerical	Rel. error	
Maximum amplitude				
Surge (m)	0.7800	0.7068	-9.385%	
Pitch (deg)	13.88	11.88	-14.45%	
Averaged double amplitude				
Heave (m)	0.2541	0.2486	-2.165%	
PTO-mooring system force (N)	399.96	370.77	-7.298%	
WaveSpring force, F_{WS} (N)	383.19	365.14	-4.710%	

Hals et al (EWTEC 2015)

Verification & Validation

- ◇ Numerical uncertainty (Eça & Hoekstra, JCP 2014)
 - Discretization error
 - ✿ Iteration error
- ☆ Modelling error (turbulence ongoing)
- Obmain error (done no influence of width)

Verification & Validation procedure

Case name	1M	3M	10M	20M
Level 0 cell	0.48	0.33	0.215	0.175
size x, y (m)				
Level 0 cell size z (m)	0.33	0.25	0.167	0.136
Grid number	1075404	3082530	10886096	19934406
Grid within wave height	15	20	30	37
Max. y+ from simulation	208	131	49.2	99.7

$$\varepsilon = \delta_{RE} = \phi_i - \phi_0 = ah^p$$
$$U_{\phi} = F_S |\varepsilon|$$

$$\begin{aligned} x_{bND} &= x_b / H_0 \\ z_{bND} &= z_b / H_0 \\ \theta_{ND} &= \theta / kH_0 \\ RF_{ND} &= RF / \rho g H_0 S_w \end{aligned}$$

Discretization error

Uncertainty	Surge	Heave	Pitch	Res.Force
20M	6.14%	3.77%	2.37%	7.53%
10M	8.45%	4.54%	3.29%	9.21%
3M	16.49%	6.76%	6.56%	14.31%
1M	29.61%	9.61%	12.02%	20.65%

Should use 10 in order to keep iteration error two orders of magnitude lower than disc. error

Figure 20: Initial pressure residual in the two periods

Concluding remarks

- 1 The innovative design of CorPower is validated with CFD
- 2 The WaveSpring system is well represented in CFD simulation
- 3 The numerical study shows 5-10% uncertainty

Thanks for your attention!