303 research outputs found

    Fractional release factors of long-lived halogenated organic compounds in the tropical stratosphere

    Get PDF
    Fractional release factors (FRFs) of organic trace gases are time-independent quantities that influence the calculation of Global Warming Potentials and Ozone Depletion Potentials. We present the first set of vertically resolved FRFs for 15 long-lived halocarbons in the tropical stratosphere up to 34 km altitude. They were calculated from measurements on air samples collected on board balloons and a high altitude aircraft. We compare the derived dependencies of FRFs on the mean stratospheric transit times (the so-called mean ages of air) with similarly derived FRFs originating from measurements at higher latitudes and find significant differences. Moreover a comparison with averaged FRFs currently used by the World Meteorological Organisation revealed the limitations of these measures due to their observed vertical and latitudinal variability. The presented data set could be used to improve future ozone level and climate projections

    Limited reliability of the indirect immunofluorescence technique for the detection of anti-Rib-P antibodies

    Get PDF
    Following publication of our recent article [1], we noticed the following errors: In the Results section, under the heading ‘Confirmation of anti-Rib-P reactivity in 51 samples by other methods’, in the first sentence, 39.6 % should be 41.2%. In the same section, the following sentence: The agreement between the individual methods and the IB was found at 0.57 (P < 0.0001) (ELISA), 0.71 (P < 0.0001), and 0.96 (P < 0.0001) according to the kappa method. Should read: The agreement between the individual methods and the IB was found at 0.57 (P < 0.0001) (ELISA), 0.71 (P < 0.0001) (LIA), and 0.96 (P < 0.0001) (EliA(R)) according to the kappa method. In the results section, under the heading ‘Anti-Rib-P reactivity in a systemic lupus erythematosus cohort and controls’, in the second sentence, 28 % should be 29%. Referenc

    Effects of different leukocyte subpopulations and flow conditions on leukocyte accumulation during reperfusion

    Get PDF
    Background/Aims: The study examined the interdependent effects of shear stress and different leukocyte subpopulations on endothelial cell activation and cell interactions during low flow and reperfusion. Methods: Human umbilical venous endothelial cells were perfused with either neutrophils or monocytes at different shear stress (2-0.25 dyn/cm 2) and adhesion was quantified by microscopy. Effects of adherent neutrophils and monocytes on endothelial cell adhesion molecule expression were analyzed by flow cytometry after 4-hour static coincubation. After coincubation, the cocultures were reperfused with labeled neutrophils at 2 dyn/cm 2 and their adhesion was quantified selectively. For the control, endothelium monocultures with and without lipopolysaccharide activation were used. Results: At 2 dyn/cm 2, adhesion did not exceed baseline levels on nonactivated endothelium. Decreasing shear stress to 0.25 dyn/cm 2 largely increased the adhesion of both leukocyte subpopulations, similar to the effect of lipopolysaccharide at 2 dyn/cm 2. However, only adherent monocytes increased adhesion molecule expression, whereas neutrophils had no effect. As a functional consequence, adherent monocytes largely increased neutrophil adhesion during reperfusion, whereas adherent neutrophils did not. Conclusion: Compromised shear stress is an autonomous trigger of leukocyte adhesion even in the absence of additional activators. Exceeding this immediate effect, adherent monocytes induce further endothelial activation and enhance further neutrophil adhesion during reperfusion. Copyrigh

    Direct and indirect methods for the quantification of leg volume: Comparison between water displacement volumetry, the disk model method and the frustum sign model method, using the correlation coefficient and the limits of agreement

    Get PDF
    Volume changes can be measured either directly by water-displacement volumetry or by various indirect methods in which calculation of the volume is based on circumference measurements. The aim of the present study was to determine the most appropriate indirect method for lower leg volume calculation using water displacement volumetry as a ‘golden standard’. For 20 male volunteers, age range: 20–35 years, the volume of both lower legs was determined directly by water-displacement volumetry, and indirectly by the frustum sign model method and the disc model method. Calculation of the correlation coefficient and the limits of agreement showed that water-displacement volumetry and the disc model method are interchangeable (r = + 0.99, mean ± 2s = − 45 ± 78 ml), whereas this does not hold for the frustum sign model (r = + 0.93, mean ± 2s = 521 ± 238 ml). In the clinical situation volume measurement can be valuable for monitoring of the severity of oedema or haematoma occurrence after surgery or severe trauma. This non-invasive diagnostic aid may be a valuable adjuvant means of diagnosis for several volume dependent disorders of the extremities

    Rapid growth of HFC-227ea (1,1,1,2,3,3,3-Heptafluoropropane) in the atmosphere

    Get PDF
    We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in remote regions of the atmosphere and present evidence for its rapid growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.026 ppt per year in 2000 to 0.057 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Fur- thermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by more than a factor of three

    A monitor for Cellular Oxygen METabolism (COMET): monitoring tissue oxygenation at the mitochondrial level

    Get PDF
    After introduction of the protoporphyrin IX-triplet state lifetime technique as a new method to measure mitochondrial oxygen tension in vivo, the development of a clinical monitor was started. This monitor is the “COMET”, an acronym for Cellular Oxygen METabolism. The COMET is a non-invasive electrically powered optical device that allows measurements on the skin. The COMET is easy to transport, due to its lightweight and compact size. After 5-aminolevulinic acid application on the human skin, a biocompatible sensor enables detection of PpIX in the mitochondria. PpIX acts as a mitochondrially located oxygen-sensitive dye. Three measurement types are available in the touchscreen-integrated user interface, ‘Single’, ‘Interval’ and ‘Dynamic measurement’. COMET is currently used in several clinical studies in our institution. In this first description of the COMET device we show an incidental finding during neurosurgery. To treat persisting intraoperative hypertension a patient was administered clonidine, but due to rapid administration an initial phase of peripheral vasoconstriction occurred. Microvascular flow and velocity parameters measured with laser-doppler (O2C, LEA Medizintechnik) decreased by 44 and 16% respectively, but not the venous-capillary oxygen saturation. However, mitochondrial oxygen tension in the skin detected by COMET decreased from a steady state of 48 to 16 mmHg along with the decrease in flow and velocity. We conclude that COMET is ready for clinical application and we see the future for this bedside monitor on the intensive care, operating theater, and testing of mitochondrial effect of pharmaceuticals

    Performance of the ESC 0/1-h and 0/3-h Algorithm for the Rapid Identification of Myocardial Infarction Without ST-Elevation in Patients With Diabetes

    Get PDF
    Patients with diabetes mellitus (DM) have elevated levels of high-sensitivity cardiac troponin (hs-cTn). We investigated the diagnostic performance of the European Society of Cardiology (ESC) algorithms to rule out or rule in acute myocardial infarction (AMI) without ST-elevation in patients with DM.; We prospectively enrolled 3,681 patients with suspected AMI and stratified those by the presence of DM. The ESC 0/1-h and 0/3-h algorithms were used to calculate negative and positive predictive values (NPV, PPV). In addition, alternative cutoffs were calculated and externally validated in 2,895 patients.; In total, 563 patients (15.3%) had DM, and 137 (24.3%) of these had AMI. When the ESC 0/1-h algorithm was used, the NPV was comparable in patients with and without DM (absolute difference [AD] -1.50 [95% CI -5.95, 2.96]). In contrast, the ESC 0/3-h algorithm resulted in a significantly lower NPV in patients with DM (AD -2.27 [95% CI -4.47, -0.07]). The diagnostic performance for rule-in of AMI (PPV) was comparable in both groups: 0/1-h (AD 6.59 [95% CI -19.53, 6.35]) and 0/3-h (AD 1.03 [95% CI -7.63, 9.7]). Alternative cutoffs increased the PPV in both algorithms significantly, while improvements in NPV were only subtle.; Application of the ESC 0/1-h algorithm revealed comparable safety to rule out AMI comparing patients with and without DM, while this was not observed with the ESC 0/3-h algorithm. Although alternative cutoffs might be helpful, patients with DM remain a high-risk population in whom identification of AMI is challenging and who require careful clinical evaluation

    A New Mint1 Isoform, but Not the Conventional Mint1, Interacts with the Small GTPase Rab6

    Full text link
    Small GTPases of the Rab family are important regulators of a large variety of different cellular functions such as membrane organization and vesicle trafficking. They have been shown to play a role in several human diseases. One prominent member, Rab6, is thought to be involved in the development of Alzheimer’s Disease, the most prevalent mental disorder worldwide. Previous studies have shown that Rab6 impairs the processing of the amyloid precursor protein (APP), which is cleaved to β-amyloid in brains of patients suffering from Alzheimer’s Disease. Additionally, all three members of the Mint adaptor family are implied to participate in the amyloidogenic pathway. Here, we report the identification of a new Mint1 isoform in a yeast two-hybrid screening, Mint1 826, which lacks an eleven amino acid (aa) sequence in the conserved C-terminal region. Mint1 826, but not the conventional Mint1, interacts with Rab6 via the PTB domain. This interaction is nucleotide-dependent, Rab6-specific and influences the subcellular localization of Mint1 826. We were able to detect and sequence a corresponding proteolytic peptide derived from cellular Mint1 826 by mass spectrometry proving the absence of aa 495–505 and could show that the deletion does not influence the ability of this adaptor protein to interact with APP. Taking into account that APP interacts and co-localizes with Mint1 826 and is transported in Rab6 positive vesicles, our data suggest that Mint1 826 bridges APP to the small GTPase at distinct cellular sorting points, establishing Mint1 826 as an important player in regulation of APP trafficking and processing

    Nanosilver/DCOIT-containing surface coating effectively and constantly reduces microbial load in emergency room surfaces

    Get PDF
    Background Colonization of near-patient surfaces in hospitals plays an important role as a source of healthcare-associated infections. Routine disinfection methods only result in short-term elimination of pathogens. Aim To investigate the efficiency of a newly developed antimicrobial coating containing nanosilver in long-term reduction of bacterial burden in hospital surfaces to close the gap between routine disinfection cycles. Methods In this prospective, double-blinded trial, frequently touched surfaces of a routinely used treatment room in an emergency unit of a level-I hospital were treated with a surface coating (nanosilver/DCOIT-coated surface, NCS) containing nanosilver particles and another organic biocidal agent (4,5-dichloro-2-octyl-4-isothiazolin-3-one, DCOIT), whereas surfaces of another room were treated with a coating missing both the nanosilver- and DCOIT-containing ingredient and served as control. Bacterial contamination of the surfaces was examined using contact plates and liquid-based swabs daily for a total trial duration of 90 days. After incubation, total microbial counts and species were assessed. Findings In a total of 2880 antimicrobial samples, a significant reduction of the overall bacterial load was observed in the NCS room (median: 0.31 cfu/cm2; interquartile range: 0.00–1.13) compared with the control coated surfaces (0.69 cfu/cm2; 0.06–2.00; P 5 cfu/cm2) by 60% (odds ratio 0.38, P < 0.001). No significant difference in species distribution was detected between NCS and control group. Conclusion Nanosilver-/DCOIT-containing surface coating has shown efficiency for sustainable reduction of bacterial load of frequently touched surfaces in a clinical setting
    corecore