499 research outputs found

    Properties of polypyrrole polyvinilsulfate films for dual actuator sensing systems

    Get PDF
    One of the challenges of modern science is the development of actuators able to sense working conditions while actuation, mimicking the way in which biological organs work. Actuation of those organs includes nervous (electric) pulses dense reactive gels, chemical reactions exchange of ions and solvent. For that purpose, conducting polymers are being widely studied. In this work the properties of self-supported films of the polypyrrole:polyvinilsulfate (PPy/PVS) blend polymer were assessed. X-ray photoelectron spectroscopy (XPS) studies show how during reduction / oxidation the polymer exchanges cations when immersed in a NaClO4 aqueous solution, revealing free positive charges in the electrolytic solution as the driving agents leading to the swelling/shrinking of the polymer. Eventually it is the phenomenon responsible of the actuation of the polymeric motors. Submitting the system to consecutive potential sweeps shows the reaction is really sensing the scan rate used in each cycle revealing that while actuating the system is actually sensing the electrochemical working conditions.The research was supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 641822

    Dual sensing-actuation artificial muscle based on polypyrrole-carbon nanotube composite

    Get PDF
    Dual sensing artificial muscles based on conducting polymer are faradaic motors driven by electrochemical reactions, which announce the development of proprioceptive devices. The applicability of different composites has been investigated with the aim to improve the performance. Addition of carbon nanotubes may reduce irreversible reactions. We present the testing of a dual sensing artificial muscle based on a conducting polymer and carbon nanotubes composite. Large bending motions (up to 127 degrees) in aqueous solution and simultaneously sensing abilities of the operation conditions are recorded. The sensing and actuation equations are derived for incorporation into a control system.The research was supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 641822

    Prospects for the detection of transient neutrino sources with PLEnuM

    Full text link
    The discovery of high-energy astrophysical neutrinos in the TeV-PeV range by IceCube marked the start of neutrino astronomy, and the search for their sources continues. Two promising source candidates have been identified by IceCube: NGC 1068 in the 1 TeV-10 TeV range and TXS 0506+056 in the 0.1-1 PeV range. Both sources have gamma-ray counterparts, but additional time information of both neutrinos and gamma rays were essential for the identification of TXS 0506+056. The Planetary Neutrino Monitoring (PLEnuM) concept is an approach for combining the exposures of all current and future neutrino observatories - such as KM3NeT, Baikal-GVD, P-ONE in the Northern Hemisphere, and IceCube-Gen2 in the Southern Hemisphere. Using this PLEnuM approach, we estimate how the detection capability for transient sources candidates like blazars and GRBs improves once the future neutrino observatories come online. In addition, we present how the combined, instantaneous field of view of PLEnuM improves the real-time detection rate of rare, very-high-energy neutrinos across the entire sky.Comment: Presented at the 38th International Cosmic Ray Conference (ICRC2023) in Nagoya, Japa

    Electrochemical synthesis and characterization of self-supported polypyrrole-DBS-MWCNT electrodes

    Get PDF
    The electrochemical conditions (electrolyte potential window, monomeric oxidation) for the synthesis of polypyrrole- dodecylbenzenesulfonate-multiwalled carbon nanotube (PPy-DBS-MWCNT) composite were determined. Thick PPy-DBS-MWNT films were electrogenerated and peeled off from the working electrode. Selfsupported PPy-DBS-MWCNT electrodes were fabricated. The morphology of the film was analyzed by SEM. Self-supported electrodes were characterized by potential cycling and by consecutive square potential waves in NaClO4 aqueous solution with different cathodic potential limits. Higher reduced structures (the current never drops to zero) are obtained and analyzed fromvoltammetric responses until rising cathodic potential limits (up to−5 V). For high cathodic potentials (N−1 V) a slow hydrogen evolution coexists with the film reduction, as revealed from coulovoltammetric (charge-potential) responses, and the reduction rate decreaseswithout significant polymeric degradation. Degradation of the material electroactivity in NaClO4 is initiated by anodic overpotentials beyond 1.2 V. Both, oxidation and reduction chronoamperometric responses prove the presence of nucleation processes, most significant during oxidation. Chronocoulometric responses illustrate slower oxidation rates from deeper reduced initial states. The electrochemical responses are explained by reaction-driven conformational and structural changes that are clarified by the coulovoltammetric response

    Self-supported polypyrrole/polyvinylsulfate films: electrochemical synthesis, characterization, and sensing properties of their redox reactions

    Get PDF
    Thick films of polypyrrole/polyvinylsulfate (PPy/PVS) blends were electrogenerated on stainless‐steel electrodes under potentiostatic conditions from aqueous solution. The best electropolymerization potential window was determined by cyclic voltammetry. After removing the film from the back metal, self‐supported electrodes were obtained. Voltammetric, coulovoltammetric, and chronoamperometric responses from a LiClO4 aqueous solution indicated the formation of an energetically stable structure beyond a reduction threshold of the material. Its subsequent oxidation required higher anodic voltammetric overpotentials or longer chronoamperometric oxidation times. This structure was attributed to the formation of lamellar or vacuolar structures. X‐ray photoelectron spectroscopy analysis of the films under different oxidations states revealed that the electrochemical reactions drive the reversible exchange of cations between the film and the electrolyte. The electrical energy and the charge consumed by the reversible reaction of the film under voltammetric conditions between the constant potential limits are a function of the potential scan rate, that is, they sense the working electrochemical conditions.This project was supported by the Marie‐Sklodowska‐Curie Innovative Training Network MICACT‐H2020‐MSCA‐ITN‐2014 and by the Séneca Foundation project 19253/PI/14

    Assessment of Ecosystem Services across the Land–Sea Interface in Baltic Case Studies

    Get PDF
    Spatial assessments of ecosystem services (ES) are needed to fulfil EU policy requirements and to support practical applications of the ES concept in policy implementation. So far, ES assessments have largely focused on terrestrial systems. A joint approach for land and sea is especially lacking. To overcome this gap, we present a novel spatial habitat typology and ES classification for an assessment across the land–sea interface. We build upon existing approaches and common spatial definitions, like CORINE land cover (CLC) types, water bodies of the Water Framework Directive (WFD), and habitat types according to the Habitats Directive (HD). We show applications of the resulting ES matrix for an expert-based assessment of ES potentials in three Baltic study sites (Schlei, Greifswald Bay and Curonian Lagoon). A complementary indicator-based approach to assess ES flows is introduced and applied. It enables a quantification of ES potentials and flows and ensures comparability among case study sites. Comparisons between the results for ES potentials and flows show that development capacities exist in particular for provisioning ES for marine habitats. Our approaches are spatially expandable and transferrable and could be applied to support environmental policy implementation. Further, we discuss their practical relevance, current limitations, and future research perspective

    Biomimetic reactions in conducting polymers for artificial muscles: sensing working conditions

    Get PDF
    IIn the dense gel that is the intracellular matrix forming part of living cells electrochemical reactions take place provoking the interchange of ions and water with the surroundings. Systems containing conducting polymers mimic this feature of biological organs. In particular, conducting polymers are being studied as dual sensing-actuating reactive materials giving new multifunctional sensing-actuators, which allow the construction and theoretical description of artificial proprioceptive devices. Here films of polypyrrole/dodecyl benzene sulfonate (PPy-DBS) coating a platinum electrode were submitted to potential sweeps at different sweep rates in order to explore if the polymer reaction senses the working electrochemical conditions. The effective consumed electrical energy per cycle follows a fast decrease when the scan rate increases described by the addition of two exponential sensing functions. Moreover, the variation of the hysteresis from the parallel charge/potential loop with the scan rate is also described by the addition of two exponential functions. In both cases the exponential functions fitting results at low scan rates are related to reaction-driven conformational movements of the polymer chains, being closer to biochemical conformational and allosteric sensors. The second exponential functions fitting results at high scan rates are related to diffusion kinetic control, being closer to present electrochemical sensors.The research was supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 641822

    Ecosystem Service Assessments in Water Policy Implementation: An Analysis in Urban and Rural Estuaries

    Get PDF
    Coastal waters provide a wide range of ecosystem services (ES), but are under intensive human use, face fast degradation and are subject to increasing pressures and changes in near future. As consequence, European Union (EU) water policies try to protect, restore and manage coastal and marine systems in a sustainable way. The most important EU directive in this respect is the Water Framework Directive (WFD) (2000/60/EC). Objective is to reach a “good status” in EU waters, following a stepwise and guided process. Our major objective is to test how an ecosystem service assessment can support WFD implementation in practice. We use the Marine Ecosystem Service Assessment Tool (MESAT) that utilizes spatial definitions, reference conditions and the good status according to the WFD as well as data and information gained during the implementation process. The data-based tool allows comparative analyses between different ecological states and an evaluation of relative changes in ES provision. We apply MESAT to two contrasting systems in the German Baltic Sea region, the rural Schlei and the urban/industrialized Warnow Estuary. These data-based assessments show how the ES provision has changed between the historic, pre-industrial state around 1880 (reference conditions with high ecological status), the situation around 1960 (good ecological status), and today. The analysis separates the estuaries into water bodies. A complementary expert-based ES assessment compares the situation today with a future scenario “Warnow 2040” assuming a good ecological status as consequence of a successful WFD implementation. Strengths and weaknesses of the approaches and their utilization in the WFD are discussed. ES assessments can be regarded as suitable to support public relation activities and to increase the acceptance of measures. Further, they are promising tools in participation and stakeholder processes within the planning of measures. However an ES assessment not only supports the WFD implementation, but the WFD provides a frame for ES assessments larger scale assessments in seascapes, increases the acceptance of the ES approach and the readiness of stakeholders to get involved

    Terrestrial, Coastal and Marine Ecosystem Service Matrix: [research data]

    Get PDF
    This research item is a revised and enlarged version of a qualitative assessment matrix for the appraisal of ecosystem service potentials. The product is a simple tool for scoring landscape and seascape types with respect to their abilities to provide provisioning, regulating and cultural ecosystem services as well as indicators of ecosystem state by applying criteria of ecosystem integrity
    corecore