13 research outputs found

    In vivo Recording Quality of Mechanically Decoupled Floating Versus Skull-Fixed Silicon-Based Neural Probes

    Get PDF
    Throughout the past decade, silicon-based neural probes have become a driving force in neural engineering. Such probes comprise sophisticated, integrated CMOS electronics which provide a large number of recording sites along slender probe shanks. Using such neural probes in a chronic setting often requires them to be mechanically anchored with respect to the skull. However, any relative motion between brain and implant causes recording instabilities and tissue responses such as glial scarring, thereby shielding recordable neurons from the recording sites integrated on the probe and thus decreasing the signal quality. In the current work, we present a comparison of results obtained using mechanically fixed and floating silicon neural probes chronically implanted into the cortex of a non-human primate. We demonstrate that the neural signal quality estimated by the quality of the spiking and local field potential (LFP) recordings over time is initially superior for the floating probe compared to the fixed device. Nonetheless, the skull-fixed probe also allowed long-term recording of multi-unit activity (MUA) and low frequency signals over several months, especially once pulsations of the brain were properly controlled

    Dynamic fading memory and expectancy effects in monkey primary visual cortex

    No full text
    In order to investigate the involvement of primary visual cortex (V1) in working memory (WM), parallel, multisite recordings of multiunit activity were obtained from monkey V1 while the animals performed a delayed match-to-sample (DMS) task. During the delay period, V1 population firing rate vectors maintained a lingering trace of the sample stimulus that could be reactivated by intervening impulse stimuli that enhanced neuronal firing. This fading trace of the sample did not require active engagement of the monkeys in the DMS task and likely reflects the intrinsic dynamics of recurrent cortical networks in lower visual areas. This renders an active, attention-dependent involvement of V1 in the maintenance of working memory contents unlikely. By contrast, population responses to the test stimulus depended on the probabilistic contingencies between sample and test stimuli. Responses to tests that matched expectations were reduced which agrees with concepts of predictive coding

    Stimulus content shapes cortical response statistics

    No full text
    Spike count correlations (SCCs) are ubiquitous in sensory cortices, are characterized by rich structure and arise from structured internal interactions. Yet, most theories of visual perception focus exclusively on the mean responses of individual neurons. Here, we argue that feedback interactions in primary visual cortex (V1) establish the context in which individual neurons process complex stimuli and that changes in visual context give rise to stimulus-dependent SCCs. Measuring V1 population responses to natural scenes in behaving macaques, we show that the fine structure of SCCs is stimulus-specific and variations in response correlations across-stimuli are independent of variations in response means. Moreover, we demonstrate that stimulus-specificity of SCCs in V1 can be directly manipulated by controlling the high-order structure of synthetic stimuli. We propose that stimulus-specificity of SCCs is a natural consequence of hierarchical inference where inferences on the presence of high-level image features modulate inferences on the presence of low-level features

    Paying attention to natural scenes in area V1

    No full text
    Natural scene responses in the primary visual cortex are modulated simultaneously by attention and by contextual signals about scene statistics stored across the connectivity of the visual processing hierarchy. We hypothesize that attentional and contextual top-down signals interact in V1, in a manner that primarily benefits the representation of natural visual stimuli, rich in high-order statistical structure. Recording from two macaques engaged in a spatial attention task, we show that attention enhances the decodability of stimulus identity from population responses evoked by natural scenes but, critically, not by synthetic stimuli in which higher-order statistical regularities were eliminated. Attentional enhancement of stimulus decodability from population responses occurs in low dimensional spaces, as revealed by principal component analysis, suggesting an alignment between the attentional and the natural stimulus variance. Moreover, natural scenes produce stimulus-specific oscillatory responses in V1, whose power undergoes a global shift from low to high frequencies with attention. We argue that attention and perception share top-down pathways, which mediate hierarchical interactions optimized for natural vision

    Predictive coding of natural images by V1 firing rates and rhythmic synchronization

    No full text
    Predictive coding is an important candidate theory of self-supervised learning in the brain. Its central idea is that sensory responses result from comparisons between bottom-up inputs and contextual predictions, a process in which rates and synchronization may play distinct roles. We recorded from awake macaque V1 and developed a technique to quantify stimulus predictability for natural images based on self-supervised, generative neural networks. We find that neuronal firing rates were mainly modulated by the contextual predictability of higher-order image features, which correlated strongly with human perceptual similarity judgments. By contrast, V1 gamma (γ)-synchronization increased monotonically with the contextual predictability of low-level image features and emerged exclusively for larger stimuli. Consequently, γ-synchronization was induced by natural images that are highly compressible and low-dimensional. Natural stimuli with low predictability induced prominent, late-onset beta (β)-synchronization, likely reflecting cortical feedback. Our findings reveal distinct roles of synchronization and firing rates in the predictive coding of natural images

    Data from: Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations

    No full text
    The integration of direct bottom-up inputs with contextual information is a core feature of neocortical circuits. In area V1, neurons may reduce their firing rates when their receptive field input can be predicted by spatial context. Gamma-synchronized (30–80 Hz) firing may provide a complementary signal to rates, reflecting stronger synchronization between neuronal populations receiving mutually predictable inputs. We show that large uniform surfaces, which have high spatial predictability, strongly suppressed firing yet induced prominent gamma synchronization in macaque V1, particularly when they were colored. Yet, chromatic mismatches between center and surround, breaking predictability, strongly reduced gamma synchronization while increasing firing rates. Differences between responses to different colors, including strong gamma-responses to red, arose from stimulus adaptation to a full-screen background, suggesting prominent differences in adaptation between M- and L-cone signaling pathways. Thus, synchrony signaled whether RF inputs were predicted from spatial context, while firing rates increased when stimuli were unpredicted from context

    Dataset 5

    No full text
    Please see readme and description of dataset 5 in publication

    Dataset 4

    No full text
    Please see readme and description of dataset 4 in publication

    Dataset 1

    No full text
    Please see readme and description of dataset 1 in publication

    Dataset 2

    No full text
    Please see readme and description of dataset 2 in publication
    corecore