28 research outputs found
Molecular genetics of rare puberty disorders in Finland and Denmark
Sexual differentiation and pubertal development are complex processes whose disruption leads to the abnormal development of primary and/or secondary sexual characteristics. Although mutations in several genes have been implicated in these disorders, the majority of the patients still lack a molecular genetic diagnosis. The aim of this thesis work was to identify genetic defects underlying complete androgen insensitivity syndrome (CAIS), congenital hypogonadotropic hypogonadism (CHH) and gonadotropin-dependent precocious puberty (GDPP), in Finnish and Danish patients.
The genetic cause of CAIS was investigated in two siblings without identified mutations in the androgen receptor gene (AR). Whole-genome sequencing and AR cDNA analysis revealed a deep intronic mutation that led to abnormal splicing of AR mRNA and undetectable amount of AR protein in patient fibroblasts.
The genetic causes of both extremes of pubertal variation, GDPP and CHH, were investigated in Danish patients. Twenty-nine Danish girls with GDPP were screened for mutations in MKRN3, which was recently identified as a regulator of pubertal onset, and one girl was found to have a mutation in this gene. Forty-one Danish CHH patients were screened for mutations in the CHH genes ANOS1, FGFR1, FGF8, PROK2, PROKR2, GNRHR, TAC3, TACR3, and KISS1R. Additionally, CHD7 was screened in two patients with hearing loss. Twelve patients were found to have a conclusive mutation; either in FGFR1 (5), ANOS1 (4), GNRHR (1), or CHD7 (2).
SEMA3A and SEMA7A, two candidate genes of CHH, were screened in fifty Finnish CHH patients. Three SEMA3A variants and two SEMA7A variants were identified in the patients, but the identified variants do not seem to be sufficient to cause CHH alone.
In conclusion, the intronic AR mutation is the first reported case of pseudoexon activation leading to CAIS demonstrating the importance of AR cDNA analysis in AIS patients without a molecular genetic diagnosis. Mutations in MKRN3 underlie GDPP in Denmark, although they are not very common in sporadic cases. FGFR1, ANOS1, GNRHR, and CHD7 mutations were found to underlie CHH in the Danish patients, but the majority still remain without a molecular genetic diagnosis. Finally, mutations in SEMA3A and SEMA7A do not seem to contribute significantly to CHH, and it remains to be seen whether mutations in these genes cause CHH in humans.Sukupuolten erilaistuminen ja murrosikäkehitys ovat monimutkaisia tapahtumasarjoja, joiden häiriöt johtavat primaaristen ja/tai sekundaaristen sukupuoliominaisuuksien epätavalliseen kehitykseen. Vaikka näihin häiriöihin on liitetty lukuisia geenejä, valtaosalta niistä kärsivistä potilaista ei ole löydetty taustalla olevaa geenivirhettä. Tämän väitöskirjatyön tavoitteena oli löytää uusia sukupuolen kehityksen ja murrosikäkehityksen häiriöitä aiheuttavia geenivirheitä keskittyen erityisesti androgeeniresistenssin, ennenaikaisen murrosiän ja synnynnäisen hypogonadotrooppisen hypogonadismin (CHH) taustalla oleviin virheisiin.
Androgeeniresistenssin syytä tutkittiin kahdesta sisaruksesta, joilla ei ollut tunnistettua virhettä andogeenireseptorissa (AR). Selvityksessä käytettiin kokogenomisekvensointia ja AR:n cDNA-analyysia. Androgeeniresistenssin aiheuttajaksi paljastui syvällä AR:n intronissa sijaitseva virhe, joka johti lähetti-RNA:n virheelliseen silmukoitumiseen ja AR-proteiinin havaitsemattoman alhaiseen määrään. Tämä geenivirhe on ensimmäinen raportoitu pseudoeksonin aktivoitumiseen johtava mutaatio AR:ssä.
Tanskalaisista potilaista tutkittiin murrosiän ajoituksen ääripäiden taustalla olevia geneettisiä syitä 29 tytöstä, joilla oli ennenaikainen murrosikä sekä 41 CHH-potilaasta. Tytöiltä seulottiin murrosiän alkua säätelevä geeni MKRN3, ja yhdeltä löytyi virhe kyseisestä geenistä. CHH-potilailta seulottiin geenit ANOS1, FGFR1, FGF8, PROK2, PROKR2, GNRHR, TAC3, TACR3 ja KISS1R, sekä CHD7 kahdelta potilaalta, joilla oli kuulonalenema. Kahdeltatoista löytyi geenivirhe; joko geenistä ANOS1 (4), FGFR1 (5), GNRHR (1), tai CHD7 (2). Lisäksi 50 suomalaiselta CHH-potilaalta seulottiin CHH:n ehdokasgeenit SEMA3A ja SEMA7A. SEMA3A:sta löytyi kolme ja SEMA7A:sta kaksi virhettä, mutta ne eivät todennäköisesti riitä yksinään aiheuttamaan tautia.
Yhteenvetona totean, että tässä työssä löytynyt AR-geenivirhe osoittaa cDNA-analyysin hyödyllisyyden ilman molekyyligeneettistä diagnoosia jääneillä potilailla. Lisäksi tulokset osoittavat, että virheet MKRN3-geenissä aiheuttavat ennenaikaista murrosikää myös tanskalaisissa potilaissa. Tanskalaisilta CHH-potilailta löytyi mutaatioita FGFR1-, ANOS1-, CHD7-, ja GNRHR-geeneistä, mutta valtaosa jäi ilman molekyyligeneettistä diagnoosia. Nähtäväksi myös jää, aiheuttavatko SEMA3A:n ja SEMA7A:n virheet ylipäätään CHH:ta ihmisillä
MKRN3 Interacts With Several Proteins Implicated in Puberty Timing but Does Not Influence GNRH1 Expression
Paternally-inherited loss-of-function mutations in makorin ring finger protein 3 gene (MKRN3) underlie central precocious puberty. To investigate the puberty-related mechanism(s) of MKRN3 in humans, we generated two distinct bi-allelic MKRN3 knock-out human pluripotent stem cell lines, Del 1 and Del 2, and differentiated them into GNRH1-expressing neurons. Both Del 1 and Del 2 clones could be differentiated into neuronal progenitors and GNRH1-expressing neurons, however, the relative expression of GNRH1 did not differ from wild type cells (P = NS). Subsequently, we investigated stable and dynamic protein-protein interaction (PPI) partners of MKRN3 by stably expressing it in HEK cells followed by mass spectrometry analyses. We found 81 high-confidence novel protein interaction partners, which are implicated in cellular processes such as insulin signaling, RNA metabolism and cell-cell adhesion. Of the identified interactors, 20 have been previously implicated in puberty timing. In conclusion, our stem cell model for generation of GNRH1 -expressing neurons did not offer mechanistic insight for the role of MKRN3 in puberty initiation. The PPI data, however, indicate that MKRN3 may regulate puberty by interacting with other puberty-related proteins. Further studies are required to elucidate the possible mechanisms and outcomes of these interactions.Peer reviewe
Familial central precocious puberty : two novel MKRN3 mutations
Background Paternally inherited loss-of-function mutations in MKRN3 underlie central precocious puberty (CPP). We describe clinical and genetic features of CPP patients with paternally inherited MKRN3 mutations in two independent families. Methods The single coding exon of MKRN3 was analyzed in three patients with CPP and their family members, followed by segregation analyses. Additionally, we report the patients' responses to GnRH analog treatment. Results A paternally inherited novel heterozygous c.939C>G, p.(Ile313Met) missense mutation affecting the RING finger domain of MKRN3 was found in a Finnish girl with CPP (age at presentation 6 years). Two Polish siblings (a girl presenting with B2 at the age of 4 years and a boy with adult size testes at the age of 9 years) had inherited a novel heterozygous MKRN3 mutation c.1237_1252delGGAGACACATGCTTTT p.(Gly413Thrfs*63) from their father. The girls were treated with GnRH analogs, which exhibited suppression of the hypothalamic-pituitary-gonadal axis. In contrast, the male patient was not treated, yet he reached his target height. Conclusions We describe two novel MKRN3 mutations in three CPP patients. The first long-term data on a boy with CPP due to an MKRN3 mutation questions the role of GnRH analog treatment in augmenting adult height in males with this condition. Impact We describe the genetic cause for central precocious puberty (CPP) in two families. This report adds two novel mutations to the existing literature. One of the mutations, p.(Ile313Met) affects the RING finger domain of MKRN3, which has been shown to be important for repressing the promoter activity of and . MKRN3KISS1TAC3We describe the first long-term observation of a male patient with CPP due to a paternally inherited MKRN3 loss-of-function mutation. Without GnRH analog treatment, he achieved an adult height that was in accordance with his mid-parental target height.Peer reviewe
The role of KCNQ1 mutations and maternal beta blocker use during pregnancy in the growth of children with long QT syndrome
Synnynnäinen ionikanavasairaus pitkä QT -oireyhtymä (long QT syndrome, LQTS) on perinnöllinen hengen-vaarallisia rytmihäiriöitä aiheuttava sairaus. LQTS johtuu sydänlihassolujen ionikanavien rakenteita koodaa-vien geenien mutaatioista. Yleisimmät mutaatiot ovat KCNQ1-geenissä, ja ne aiheuttavat sairauden alamuo-don LQT1. KCNQ1 sijaitsee kromosomin 11p15.5 leimautuneella alueella, ja se koodittaa jänniteriippuvaista kaliumkanavaa, Kv7.1:a. Kaksi KCNQ1:n aktivoivaa mutaatiota aiheuttavat autosomaalisesti dominantisti periytyvän kasvuhormonin vajauksen ja äidiltä perittynä ienfibromatoosin. Tutkimuksen tarkoituksena oli analysoida LQTS -potilaiden, joilla on toiminnan hävittävä mutaatio (loss-of-function mutaatio) KCNQ1-geenissä, kasvua ja endokriinisia ominaisuuksia. Keskityimme erityisesti varhaisen kasvun ja parent-of-origin -mutaation suhteeseen.
Tutkimuksessa analysoitiin LQT1-potilaiden (n=104) syntymäpituutta ja -painoa, syntymän jälkeistä kasvua ensimmäisen vuoden osalta sekä potilaiden endokriinisia ominaisuuksia. Tutkimuksessa havaittiin, että poti-laat, jotka olivat perineet KCNQ1-mutaation äidiltään, olivat syntymässä lyhyempiä kuin potilaat, jotka olivat perineet mutaation isältään. Jatkoanalyysit osoittivat, että vain potilaat, joiden äidit olivat saaneet beetasal-paajaa raskaana ollessaan, olivat lyhyempiä ja kevyempiä kuin ne potilaat, jotka olivat perineet mutaation isältään. Äidin beetasalpaajan käyttö raskauden aikana oli myös yhteydessä matalampiin napa-TSH-pitoisuuksiin sekä merkittävään saavutuskasvuun ensimmäisen elinvuoden aikana. Myöhemmin eroa ei ha-vaittu.
Tutkimuksemme mukaan KCNQ1:n loss-of-function -mutaatiot eivät ole yhteydessä epänormaaliin kasvuun. Sen sijaan analyysiemme mukaan äidin raskauden aikainen beetasalpaajan käyttö näyttää rajoittavan ras-kaudenaikaista LQT1-potilaiden kasvua, mitä seuraa nopea saavutuskasvu ensimmäisen elinvuoden aikaan
Loss-of-Function Variants in TBC1D32 Underlie Syndromic Hypopituitarism
Context: Congenital pituitary hormone deficiencies with syndromic phenotypes and/or familial occurrence suggest genetic hypopituitarism; however, in many such patients the underlying molecular basis of the disease remains unknown. Objective: To describe patients with syndromic hypopituitarism due to biallelic loss-of-function variants in TBC1D32, a gene implicated in Sonic Hedgehog (Shh) signaling. Setting: Referral center. Patients: A Finnish family of 2 siblings with panhypopituitarism, absent anterior pituitary, and mild craniofacial dysmorphism, and a Pakistani family with a proband with growth hormone deficiency, anterior pituitary hypoplasia, and developmental delay. Interventions: The patients were investigated by whole genome sequencing. Expression profiling of TBC1D32 in human fetal brain was performed through in situ hybridization. Stable and dynamic protein-protein interaction partners of TBC1D32 were investigated in HEK cells followed by mass spectrometry analyses. Main Outcome Measures: Genetic and phenotypic features of patients with biallelic loss-offunction mutations in TBC1D32. Results: The Finnish patients harboured compound heterozygous loss-of-function variants (c.1165_1166dup p.(Gln390Phefs*32) and c.2151del p.(Lys717Asnfs*29)) in TBC1D32; the Pakistani proband carried a known pathogenic homozygous TBC1D32 splice-site variant c.1372 + 1G > A p.(Arg411_Gly458del), as did a fetus with a cleft lip and partial intestinal malrotation from a terminated pregnancy within the same pedigree. TBC1D32 was expressed in the developing hypothalamus, Rathke's pouch, and areas of the hindbrain. TBC1D32 interacted with proteins implicated in cilium assembly, Shh signaling, and brain development. Conclusions: Biallelic TBC1D32 variants underlie syndromic hypopituitarism, and the underlying mechanism may be via disrupted Shh signaling.Peer reviewe
Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene
Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46, XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46, XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5' splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation.Peer reviewe
La situación laboral de la mujer salvadoreña en calidad de inmigrante irregular en El Estado de California de los Estados Unidos de América. Periodo 2010-2017.
Causa del posicionamiento laboral y salarial de la inmigrante irregular salvadoreña en el Estado de California de los Estados Unidos de América –Impacto del posicionamiento laboral y salarial de la inmigrante irregular salvadoreña en el Estado de California de los Estados Unidos de América – Importancia de la participación activa del Estado de El Salvador en la mejora laboral y salarial de las inmigrantes irregulares salvadoreñas, radicadas en el Estado de California de los EUA
WDR11-mediated Hedgehog signalling defects underlie a new ciliopathy related to Kallmann syndrome
WDR11 has been implicated in congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS), human developmental genetic disorders defined by delayed puberty and infertility. However, WDR11's role in development is poorly understood. Here, we report that WDR11 modulates the Hedgehog (Hh) signalling pathway and is essential for ciliogenesis. Disruption of WDR11 expression in mouse and zebrafish results in phenotypic characteristics associated with defective Hh signalling, accompanied by dysgenesis of ciliated tissues. Wdr11-null mice also exhibit early-onset obesity. We find that WDR11 shuttles from the cilium to the nucleus in response to Hh signalling. WDR11 regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotrophin-releasing hormone production. The CHH/KS-associated human mutations result in loss of function of WDR11. Treatment with the Hh agonist purmorphamine partially rescues the WDR11 haploinsufficiency phenotypes. Our study reveals a novel class of ciliopathy caused by WDR11 mutations and suggests that CHH/KS may be a part of the human ciliopathy spectrum.Peer reviewe
MKRN3 Interacts With Several Proteins Implicated in Puberty Timing but Does Not Influence GNRH1 Expression
Paternally-inherited loss-of-function mutations in makorin ring finger protein 3 gene (MKRN3) underlie central precocious puberty. To investigate the puberty-related mechanism(s) of MKRN3 in humans, we generated two distinct bi-allelic MKRN3 knock-out human pluripotent stem cell lines, Del 1 and Del 2, and differentiated them into GNRH1-expressing neurons. Both Del 1 and Del 2 clones could be differentiated into neuronal progenitors and GNRH1-expressing neurons, however, the relative expression of GNRH1 did not differ from wild type cells (P = NS). Subsequently, we investigated stable and dynamic protein-protein interaction (PPI) partners of MKRN3 by stably expressing it in HEK cells followed by mass spectrometry analyses. We found 81 high-confidence novel protein interaction partners, which are implicated in cellular processes such as insulin signaling, RNA metabolism and cell-cell adhesion. Of the identified interactors, 20 have been previously implicated in puberty timing. In conclusion, our stem cell model for generation of GNRH1-expressing neurons did not offer mechanistic insight for the role of MKRN3 in puberty initiation. The PPI data, however, indicate that MKRN3 may regulate puberty by interacting with other puberty-related proteins. Further studies are required to elucidate the possible mechanisms and outcomes of these interactions
Screening for mutations in selected miRNA genes in hypogonadotropic hypogonadism patients
In approximately half of congenital hypogonadotropic hypogonadism (cHH) patients, the genetic cause remains unidentified. Since the lack of certain miRNAs in animal models has led to cHH, we sequenced human miRNAs predicted to regulate cHH-related genes (MIR7-3, MIR141, MIR429 and MIR200A-C) in 24 cHH patients with Sanger sequencing. A heterozygous variant in MIR200A (rs202051309; general population frequency of 0.02) was found in one patient. Our results suggest that mutations in the studied miRNAs are unlikely causes of cHH. However, the complex interplay between miRNAs and their target genes in these diseases requires further investigations.Peer reviewe