23 research outputs found

    4-aminobutyrate aminotrasferase (ABAT): genetic and pharmacological evidence for an involvement in gastro esophageal reflux disease

    Get PDF
    Extent: 9p.Gastro-esophageal reflux disease (GERD) is partly caused by genetic factors. The underlying susceptibility genes are currently unknown, with the exception of COL3A1. We used three independent GERD patient cohorts to identify GERD susceptibility genes. Thirty-six families, demonstrating dominant transmission of GERD were subjected to whole genome microsatellite genotyping and linkage analysis. Five linked regions were identified. Two families shared a linked region (LOD 3.9 and 2.0) on chromosome 16. We used two additional independent GERD patient cohorts, one consisting of 219 trios (affected child with parents) and the other an adult GERD case control cohort consisting of 256 cases and 485 controls, to validate individual genes in the linked region through association analysis. Sixty six single nucleotide polymorphism (SNP) markers distributed over the nine genes present in the linked region were genotyped in the independent GERD trio cohort. Transmission disequilibrium test analysis followed by multiple testing adjustments revealed a significant genetic association for one SNP located in an intron of the gene 4-aminobutyrate aminotransferase (ABAT) (Padj = 0.027). This association did not replicate in the adult case-control cohort, possibly due to the differences in ethnicity between the cohorts. Finally, using the selective ABAT inhibitor vigabatrin (c-vinyl GABA) in a dog study, we were able to show a reduction of transient lower esophageal sphincter relaxations (TLESRs) by 57.3611.4 % (p = 0.007) and the reflux events from 3.160.4 to 0.860.4 (p = 0.007). Our results demonstrate the direct involvement of ABAT in pathways affecting lower esophageal sphincter (LES) control and identifies ABAT as a genetic risk factor for GERD.Johan Jirholt, Bengt Åsling, Paul Hammond, Geoffrey Davidson, Mikael Knutsson, Anna Walentinsson, Jörgen M. Jensen, Anders Lehmann, Lars Agreus and Maria Lagerström-Ferme

    A search for genes influencing autoimmunity - focus on rheumatoid arthritis and multiple sclerosis

    No full text
    The causes of autoimmune diseases are largely unknown today, but there is evidence supporting a substantial complex genetic influence on many of these diseases as well as environmental factors and chance. In this thesis I have tried to get one step closer to the genetic causes of two autoimmune diseases through their induced counterparts in mice, namely rheumatoid arthritis (RA) and multiple sclerosis (MS). We show that experimental autoimmune encephalomyelitis (EAE), the model for MS, is controlled by two major genes. One is found to reside on mouse chromosome 15 (eae2) and the other on chromosome 3 (eae3). These genes work together giving a more severe disease. After eliminating the stronger eae2 gene by congenic breeding, we were able to identify an additional genetic factor and several putative regions also influencing disease. Furthermore, we define one region on chromosome 3 (cia5) and one on chromosome 13 that affect susceptibility to collagen induced arthritis (CIA), a mouse model of RA. In this experiment we find that the linked region on chromosome 3 is almost identical to the region found in the first study. Since these experiments were performed on the same strain combination, it is possible that the underlying genetic factor is the same in both diseases. Furthermore we were able to identify four regions that control different aspects of CIA on chromosomes 6, 7, 8 and 10 in a different cross. An interesting observation is that most linked regions are homologous to regions in the rat genome that also have been linked to CIA. This implies a common genetic pathway that promotes autoimmunity across species

    Chain shuffling to modify properties of recombinant immunoglobulins.

    No full text
    Combinatorial libraries and selection of variants from such libraries have proven to be a successful approach for identifying molecules with novel or improved properties. The importance of antibody (Ab) molecules in basic and applied research, as well as the extensive knowledge of how they interact with their antigen (Ag) targets, have made them favorite targets for modification by this approach. The binding site of Abs can be described as a set of modules that together make up the Ag-binding site. These modules may be defined either as the heavy-chain (HC) and light-chain (LC) variable domains (VH and VL respectively) or as the six individual complementarity-determining regions (CDRs) or hypervariable loops, which act together to form this structure. The variable CDRs reside in a relatively fixed framework region (FR) that makes up the basic structure and fold of the protein

    Identification of susceptibility genes for experimental autoimmune encephalomyelitis that overcome the effect of protective alleles at the eae2 locus.

    No full text
    We have previously identified a locus on mouse chromosome 15 (eae2) that regulates susceptibility to experimental autoimmune encephalomyelitis in a cross between the susceptible strain B10.RIII and the resistant strain RIIIS/J. In an effort to verify the protective effect from having two RIIIS/J alleles at eae2, the resistant locus was bred into the susceptible strain in homozygous form. However, the expected effect was not as clear as in the original study. This might be due to an epistatic effect conferred by several unidentified genes in the genome of the resistant strain or due to the environment by genotype interactions, possibly overcoming the effect of protective alleles at eae2. To further the genetic understanding in this disease, a genome-wide linkage screening approach was employed on an F(2) intercross that carried the protective allele at eae2in homozygous form while the rest of the genome segregated between the B10.RIII and RIIIS/J strains as in the original investigation. In the present study we find one region on chromosome 7, not previously identified in this strain combination, that affects the disease at significant logarithm of the odds score and six regions showing suggestive evidence for linkage to disease phenotypes

    HLA-DR7 and HLA-DQ2 : Transgenic mouse strains tested as a model system for ximelagatran hepatotoxicity

    No full text
    The oral thrombin inhibitor ximelagatran was withdrawn in the late clinical trial phase because it adversely affected the liver. In approximately 8% of treated patients, drug-induced liver injury (DILI) was expressed as transient alanine transaminase (ALT) elevations. No evidence of DILI had been revealed in the pre-clinical in vivo studies. A whole genome scan study performed on the clinical study material identified a strong genetic association between the major histocompatibility complex alleles for human leucocyte antigens (HLA) (HLA-DR7 and HLA-DQ2) and elevated ALT levels in treated patients. An immunemediated pathogenesis was suggested. Here, we evaluated whether HLA transgenic mice models could be used to investigate whether the expression of relevant HLA molecules was enough to reproduce the DILI effects in humans. In silico modelling performed in this study revealed association of both ximelagatran (pro-drug) and melagatran (active drug) to the antigen-presenting groove of the homology modelled HLA-DR7 molecule suggesting "altered repertoire" as a key initiating event driving development of DILI in humans. Transgenic mouse strains (tgms) expressing HLA of serotype HLA-DR7 (HLA-DRB1*0701, -DRA*0102), and HLA-DQ2 (HLA-DQB1*0202, -DQA1*0201) were created. These two lines were crossed with a human (h) CD4 transgenic line, generating the two tgms DR7xhCD4 and DQ2xhCD4. To investigate whether the DILI effects observed in humans could be reproduced in tgms, the mice were treated for 28 days with ximelagatran. Results revealed no signs of DILI when biomarkers for liver toxicity were measured and histopathology was evaluated. In the ximelagatran case, presence of relevant HLA-expression in a preclinical model did not fulfil the prerequisite for reproducing DILI observed in patients. Nonetheless, for the first time an HLA-transgenic mouse model has been investigated for use in HLA-associated DILI induced by a low molecular weight compound. This study shows that mimicking of genetic susceptibility, expressed as DILI-associated HLA-types in mice, is not sufficient for reproducing the complex pathogenesis leading to DILI in man.Funding Agencies|AstraZeneca; AstraZeneca R&amp;D as part of safety problem-solving activities initiated for ximelagatran (Exanta(R))</p

    Representative surface-marker expression on cells from wt and tg mice.

    No full text
    <p>A and B illustrate the expression surface markers hCD4 and HLA DR/DQ on PBMCs, respectively. C displays the T-cell population and shows that hCD4 in the tgms is almost exclusively expressed on T-cells also expressing mCD4.</p
    corecore