9 research outputs found

    OCT-measured plaque free wall angle is indicative for plaque burden: overcoming the main limitation of OCT?

    Get PDF
    textabstractThe aim of this study was to investigate the relationship between the plaque free wall (PFW) measured by optical coherence tomography (OCT) and the plaque burden (PB) measured by intravascular ultrasound (IVUS). We hypothesize that measurement of the PFW could help to estimate the PB, thereby overcoming the limited ability of OCT to visualize the external elastic membrane in the presence of plaque. This could enable selection of the optimal stent-landing zone by OCT, which is traditionally defined by IVUS as a region with a PB < 40 %. PB (IVUS) and PFW angle (OCT and IVUS) were measured in 18 matched IVUS and OCT pullbacks acquired in the same coronary artery. We determined the relationship between OCT measured PFW (PFWOCT) and IVUS PB (PBIVUS) by non-linear regression analysis. An ROC-curve analysis was used to determine the optimal cut-off value of PFW angle for the detection of PB < 40 %. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. There is a significant correlation between PFWOCT and PBIVUS (r2 = 0.59). The optimal cut-off value of the PFWOCT for the prediction of a PBIVUS < 40 % is ≥220° with a PPV of 78 % and an NPV of 84 %. This study shows that PFWOCT can be considered as a surrogate marker for PBIVUS, which is currently a common criterion to select an optimal stent-landing zone

    The role of 18F-FDG PET in the differentiation between lung metastases and synchronous second primary lung tumours

    Get PDF
    Contains fulltext : 87717.pdf (publisher's version ) (Closed access)PURPOSE: In lung cancer patients with multiple lesions, the differentiation between metastases and second primary tumours has significant therapeutic and prognostic implications. The aim of this retrospective study was to investigate the potential of (18)F-FDG PET to discriminate metastatic disease from second primary lung tumours. METHODS: Of 1,396 patients evaluated by the thoracic oncology group between January 2004 and April 2009 at the Radboud University Nijmegen Medical Centre, patients with a synchronous second primary lung cancer were selected. Patients with metastatic disease involving the lungs served as the control group. Maximum standardized uptake values (SUVs) measured with (18)F-FDG PET were determined for two tumours in each patient. The relative difference between the SUVs of these tumours (SUV) was determined and compared between the second primary group and metastatic disease group. Receiver-operating characteristic (ROC) curve analysis was performed to determine the sensitivity and specificity of the SUV for an optimal cut-off value. RESULTS: A total of 37 patients (21 metastatic disease, 16 second primary cancer) were included for analysis. The SUV was significantly higher in patients with second primary cancer than in those with metastatic disease (58 vs 28%, respectively, p < 0.001). The area under the ROC curve was 0.81 and the odds ratio for the optimal cut-off was 18.4. CONCLUSION: SUVs from (18)F-FDG PET images can be helpful in differentiating metastatic disease from second primary tumours in patients with synchronous pulmonary lesions. Further studies are warranted to confirm the consistency of these results.1 november 201

    In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography

    Get PDF
    This study sought to compare lumen dimensions as assessed by 3D quantitative coronary angiography (QCA) and by intravascular ultrasound (IVUS) or optical coherence tomography (OCT), and to assess the association of the discrepancy with vessel curvature. Coronary lumen dimensions often show discrepancies when assessed by X-ray angiography and by IVUS or OCT. One source of error concerns a possible mismatch in the selection of corresponding regions for the comparison. Therefore, we developed a novel, real-time co-registration approach to guarantee the point-to-point correspondence between the X-ray, IVUS and OCT images. A total of 74 patients with indication for cardiac catheterization were retrospectively included. Lumen morphometry was performed by 3D QCA and IVUS or OCT. For quantitative analysis, a novel, dedicated approach for co-registration and lumen detection was employed allowing for assessment of lumen size at multiple positions along the vessel. Vessel curvature was automatically calculated from the 3D arterial vessel centerline. Comparison of 3D QCA and IVUS was performed in 519 distinct positions in 40 vessels. Correlations were r = 0.761, r = 0.790, and r = 0.799 for short diameter (SD), long diameter (LD), and area, respectively. Lumen sizes were larger by IVUS (P < 0.001): SD, 2.51 ± 0.58 mm versus 2.34 ± 0.56 mm; LD, 3.02 ± 0.62 mm versus 2.63 ± 0.58 mm; Area, 6.29 ± 2.77 mm2versus 5.08 ± 2.34 mm2. Comparison of 3D QCA and OCT was performed in 541 distinct positions in 40 vessels. Correlations were r = 0.880, r = 0.881, and r = 0.897 for SD, LD, and area, respectively. Lumen sizes were larger by OCT (P < 0.001): SD, 2.70 ± 0.65 mm versus 2.57 ± 0.61 mm; LD, 3.11 ± 0.72 mm versus 2.80 ± 0.62 mm; Area 7.01 ± 3.28 mm2versus 5.93 ± 2.66 mm2. The vessel-based discrepancy between 3D QCA and IVUS or OCT long diameters increased with increasing vessel curvature. In conclusion, our comparison of co-registered 3D QCA and invasive imaging data suggests a bias towards larger lume

    Coronary plaque composition as assessed by greyscale intravascular ultrasound and radiofrequency spectral data analysis

    Get PDF
    Objectives: (i) To explore the relation between greyscale intravascular ultrasound (IVUS) plaque qualitative classification and IVUS radiofrequency data (RFD) analysis tissue types; (ii) to evaluate if plaque composition as assessed by RFD analysis can be predicted by visual assessment of greyscale IVUS images. Methods: In 120 IVUS-RFD cross-sections, a sector of the plaque with homogenous tissue composition (e.g., fibrous, fibrofatty, necrotic core, and dense calcium) was selected. Two experienced observers analyzed twice the corresponding greyscale IVUS images to: (1) classify the selected sectors according to greyscale IVUS plaque type classification and (2) predict the tissue type expected in the sector by RFD analysis. Results: In the greyscale IVUS plaque type classification, the observers agreed in 90/120 sectors (κ = 0.64). Calcified, soft and mixed plaques by greyscale IVUS classification were mainly composed of dense calcium, fibrofatty, and necrotic core, respectively, in the RFD analysis. The plaques classified in greyscale IVUS as fibrous were actually fibrous tissue by IVUS RFD in only 30% of the cases. Overall, high interobserver variability in the prediction of RFD results by visual assessment of greyscale IVUS images (κ = 0.23 for observer 1 and 0.55 for observer 2) was found. Sens

    Opposite Effects of HIV-1 p17 Variants on PTEN Activation and Cell Growth in B Cells

    Get PDF
    The HIV-1 matrix protein p17 is a structural protein that can act in the extracellular environment to deregulate several functions of immune cells, through the interaction of its NH2-terminal region with a cellular surface receptor (p17R). The intracellular events triggered by p17/p17R interaction have been not completely characterized yet. In this study we analyze the signal transduction pathways induced by p17/p17R interaction and show that in Raji cells, a human B cell line stably expressing p17R on its surface, p17 induces a transient activation of the transcriptional factor AP-1. Moreover, it was found to upregulate pERK1/2 and downregulate pAkt, which are the major intracellular signalling components involved in AP-1 activation. These effects are mediated by the COOH-terminal region of p17, which displays the capability of keeping PTEN, a phosphatase that regulates the PI3K/Akt pathway, in an active state through the serin/threonin (Ser/Thr) kinase ROCK. Indeed, the COOH-terminal truncated form of p17 (p17Δ36) induced activation of the PI3K/Akt pathway by maintaining PTEN in an inactive phosphorylated form. Interestingly, we show that among different p17s, a variant derived from a Ugandan HIV-1 strain, named S75X, triggers an activation of PI3K/Akt signalling pathway, and leads to an increased B cell proliferation and malignant transformation. In summary, this study shows the role of the COOH-terminal region in modulating the p17 signalling pathways so highlighting the complexity of p17 binding to and signalling through its receptor(s). Moreover, it provides the first evidence on the presence of a p17 natural variant mimicking the p17Δ36-induced signalling in B cells and displaying the capacity of promoting B cell growth and tumorigenesis
    corecore