155 research outputs found

    Pulse shaping with birefringent crystals: a tool for quantum metrology

    Full text link
    A method for time differentiation based on a Babinet-Soleil-Bravais compensator is introduced. The complex transfer function of the device is measured using polarization spectral interferometry. Time differentiation of both the pulse field and pulse envelope are demonstrated over a spectral width of about 100 THz with a measured overlap with the objective mode greater than 99.8%. This pulse shaping technique is shown to be perfectly suited to time metrology at the quantum limit

    Optique non-linéaire en régimes continu et femtoseconde

    No full text
    1. Rappels d'optique linéaire2. Modèle semi-classique de la réponse non-linéaire3. Quelques phénomènes d'optique non-linéaires4. Des lasers continus aux lasers femtosecondes5. Caractérisation spatio-temporelle6. Applications des impulsions femtosecondesMaste

    Fourier-transform coherent anti-Stokes Raman scattering microscopy.

    No full text
    International audienceWe report a novel Fourier-transform-based implementation of coherent anti-Stokes Raman scattering (CARS) microscopy. The method employs a single femtosecond laser source and a Michelson interferometer to create two pulse replicas that are fed into a scanning multiphoton microscope. By varying the time delay between the pulses, we time-resolve the CARS signal, permitting easy removal of the nonresonant background while providing high resolution, spectrally resolved images of CARS modes over the laser bandwidth (approximately 1500 cm(-1)). We demonstrate the method by imaging polystyrene beads in solvent

    Dispersion-based pulse shaping for multiplexed two-photon fluorescence microscopy

    No full text
    International audienceWe demonstrate selective two-photon excited fluorescence microscopy with shaped pulses produced with a simple yet efficient scheme based on dispersive optical components. The pulse train from a broadband oscillator is split into two subtrains that are sent through different amounts of glass. Beam recombination results in pulse-shape switching at a rate of 150 MHz. Time-resolved photon counting detection then provides two simultaneous images resulting from selective two-photon excitation, as demonstrated in a live embryo. Although less versatile than programmable pulse-shaping devices, this novel arrangement significantly improves the performance of selective microscopy using broadband shaped pulses while simplifying the experimental setup. Cop. 2010 Optical Society of America

    Coated conductor technology for the beamscreen chamber of future high energy circular colliders

    Get PDF
    The surface resistance of state-of-the-art REBa2Cu3O7-x coated conductors has been measured at 8 GHz versus temperature and magnetic field. We show that the surface resistance of REBa2Cu3O7-x strongly depends on the microstructure of the material. We have compared our results to those determined by the rigid fluxon model. The model gives a very good qualitative description of our data, opening the door to unravel the effect of material microstructure and vortex interactions on the surface resistance of high temperature superconductors. Moreover, it provides a powerful tool to design the best coated conductor architecture that minimizes the in-field surface resistance. We have found that the surface resistance of REBa2Cu3O7-x at 50 K and up to 9 T is lower than that of copper. This fact poses coated conductors as strong candidate to substitute copper as a beamscreen coating in CERN's future circular collider. To this end we have also analyzed the secondary electron yield (SEY) of REBa2Cu3O7-x and found a compatible coating made of sputtered Ti and amorphous carbon that decreases the SEY close to unity, a mandatory requirement for the beamscreen chamber of a circular collider in order to prevent the electron-cloud phenomenon.Peer ReviewedPostprint (author's final draft

    Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses.

    No full text
    International audienceCoherent control can be used to selectively enhance or cancel concurrent multiphoton processes, and has been suggested as a means to achieve nonlinear microscopy of multiple signals. Here we report multiplexed two-photon imaging in vivo with fast pixel rates and micrometer resolution. We control broadband laser pulses with a shaping scheme combining diffraction on an optically-addressed spatial light modulator and a scanning mirror allowing to switch between programmable shapes at kiloHertz rates. Using coherent control of the two-photon excited fluorescence, it was possible to perform selective microscopy of GFP and endogenous fluorescence in developing Drosophila embryos. This study establishes that broadband pulse shaping is a viable means for achieving multiplexed nonlinear imaging of biological tissues

    El proceso de graduación y su relación con el número de titulados en la escuela de Ingeniería Industrial de la Uleam, años 1999 - 2001.

    Get PDF
    El presente estudio, se lo realizó con el objetivo de analizar la relación existente entre el proceso de graduación en la Escuela de Ingeniería Industrial de la ULEAM y el número de titulados en el periodo 1999-2001. El planteamiento del problema se lo realiza mediante la aplicación de la investigación científica, determinando de esta manera las principales causas del problema, las que se reflejan como variables de análisis.The present study, was carried out it with the objective of analyzing the existent relationship among the graduation process in the School of Industrial Engineering of the ULEAM and the number of having titled in the period 1999-2001. The position of the problem is carried out it by means of the application of the scientific investigation, determining this way the main causes of the problem, those that are reflected as analysis variables

    RF characterisation of new coatings for future circular collider beam screens

    Get PDF
    For the future high energy colliders being under the design at this moment, the choice of a low surface impedance beam screen coating material has become of fundamental importance to ensure sufficiently low beam impedance and consequently guaranteed stable operation at high currents. We have studied the use of high-temperature superconducting coated conductors as possible coating materials for the beam screen of the FCC-hh. In addition, amorphous carbon coating and laser-based surface treatment techniques are effective surface treatments to lower the secondary electron yield and minimise the electron cloud build-up. We have developed and adapted different experimental setups based on resonating structures at frequencies below 10 GHz to study the response of these coatings and their modified surfaces under the influence of RF fields and DC magnetic fields up to 9¿T. Taking the FCC-hh as a reference, we will show that the surface resistance for REBCO-CCs is much lower than that of Cu. Further we show that the additional surface modifications can be optimised to minimise their impact on the surface impedance. Results from selected coatings will be presented.Work supported by CERN under Grants FCC-GOV-CC-0210 (KE4945/ATS), FCC-GOV-CC-0209 (KE4946/ATS) and FCC-GOV-CC0208 (KE4947/ATS). ICMAB funding through RTI2018-095853-B-C21 SuMaTe from MICINN and co-financing by the European Regional Development Fund, 2017-SGR 1519 from Generalitat de Catalunya, and COST Action NANOCO-HYBRI (CA16218) from EU, the Center of Excellence award Severo Ochoa CEX2019-000917-S. UPC funding through the Unit of Excellence Maria de Maetzu MDM2016-0600. N. Tagdulang and A. Romanov acknowledge MSCA-COFUND-2016-754397 for the PhD grant.Peer ReviewedPostprint (published version

    Evaluation of the nonlinear surface resistance of REBCO coated conductors for their use in the FCC-hh beam screen

    Get PDF
    To assess the feasibility of using high-temperature superconductors for the beam screens of future circular colliders, we have undertaken a study of the power dependence of the microwave surface resistance in state-of-the-art REBCO coated conductors at about 8 GHz and 50 K. We have employed a dielectric resonator to produce radio-frequency (RF) electromagnetic fields on the surface of the coated conductors having amplitudes similar to those generated by proton bunches circulating in the vacuum chamber of the proposed future circular collider Hadron-Hadron (FCC-hh) at CERN We show that surface resistances in REBCO coated conductors without artificial pinning centers are more affected by a RF magnetic field than those containing nano-inclusions. Despite that, at 8 GHz, 50 K, and 9 T, most REBCO coated conductors studied outperform copper in terms of surface resistance, with the best sample having a 2.3 mΩ surface resistance while being subject to an RF field 2.5 times stronger than that in the FCC-hh. We also extrapolate the measured data to 16 T and 1 GHz, the actual FCC-hh dipole magnetic field, and the mid-beam frequency spectrum, demonstrating the possibility of lowering the surface resistance of the vacuum chamber by up to two orders of magnitude compared to copper. Further, we discuss the correlation between the time structure of the electromagnetic fields provided by vector network analyzers compared to the proton bunches' time structure in the collider and present the effect of low alternating magnetic fields on vortex displacement and the possibility of demagnetization of superconducting samples.The authors acknowledge the support and samples provided by Bruker HTS GmbH, Fujikura Ltd, SuNAM CO Ltd SuperOx, SuperPower Inc. and Theva Dünnschichttechnik GmbH. This work was supported by CERN under Grant Nos. FCC-GOV-CC-0072/KE3358, FCC-GOV-CC-0153/KE4106 and FCC-GOV-CC-0208/KE4947/ATS. UPC funding was also provided through the Unit of Excellence María de Maeztu MDM2016-0600. N Tagdulang and A Romanov acknowledge MSCA-COFUND-2016-754397 for the PhD Grant. ICMAB authors acknowledge RTI2018-095853-B-C21 SuMaTe from MICINN and co-financing by the European Regional Development Fund; 2017-SGR 1519 from Generalitat de Catalunya and COST Action NANOCO-HYBRI (CA16218) from EU, the Center of Excellence award Severo Ochoa CEX2019-000917-S.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
    • …
    corecore