44 research outputs found

    Extending the WMAP Bound on the Size of the Universe

    Full text link
    Clues to the shape of our Universe can be found by searching the CMB for matching circles of temperature patterns. A full sky search of the CMB, mapped extremely accurately by NASA's WMAP satellite, returned no detection of such matching circles and placed a lower bound on the size of the Universe at 24 Gpc. This lower bound can be extended by optimally filtering the WMAP power spectrum. More stringent bounds can be placed on specific candidate topologies by using a a combination statistic. We use optimal filtering and the combination statistic to rule out the infamous "soccer ball universe'' model.Comment: 9 pages, 16 figure

    Characterizing the Gravitational Wave Signature from Cosmic String Cusps

    Full text link
    Cosmic strings are predicted to form kinks and cusps that travel along the string at close to the speed of light. These disturbances are radiated away as highly beamed gravitational waves that produce a burst like pulse as the cone of emission sweeps past an observer. Gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA) and the Laser Interferometer Gravitational wave Observatory (LIGO) will be capable of detecting these bursts for a wide class of string models. Such a detection would illuminate the fields of string theory, cosmology, and relativity. Here we develop template based Markov Chain Monte Carlo (MCMC) techniques that can efficiently detect and characterize the signals from cosmic string cusps. We estimate how well the signal parameters can be recovered by the advanced LIGO-Virgo network and the LISA detector using a combination of MCMC and Fisher matrix techniques. We also consider joint detections by the ground and space based instruments. We show that a parallel tempered MCMC approach can detect and characterize the signals from cosmic string cusps, and we demonstrate the utility of this approach on simulated data from the third round of Mock LISA Data Challenges (MLDCs).Comment: 10 pages, 10 figure

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M⊙(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    The Mock LISA Data Challenges: from Challenge 3 to Challenge 4

    Full text link
    The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants analyze the datasets and report best-fit solutions for the source parameters. Here we present the results of the third challenge, issued in Apr 2008, which demonstrated the positive recovery of signals from chirping Galactic binaries, from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10 and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference on Gravitational Waves, New York, June 21-26, 200

    Building a Field: The Future of Astronomy with Gravitational Waves

    Get PDF
    Harnessing the sheer discovery potential of GW Astronomy will require bold, deliberate,and sustained efforts to train and develop the requisite workforce. The next decaderequires a strategic plan to build - from the ground up - a robust, open, andwell-connected GW Astronomy community with deep participation from traditionalastronomers, physicists, data scientists, and instrumentalists. This basic infrastructure issorely needed as an enabling foundation for research. We outline a set ofrecommendations for funding agencies, universities, and professional societies to helpbuild a thriving, diverse, and inclusive new field
    corecore