69 research outputs found
Benthic communities of the lower mesophotic zone on One Tree shelf edge, southern Great Barrier Reef, Australia
Context: Increasing interest in mesophotic coral ecosystems has shown that reefs in deep water show considerable geomorphic and ecological variability among geographic regions.
Aims: We provide the first investigation of mesophotic reefs at the southern extremity of the Great Barrier Reef (GBR) to understand the biotic gradients and habitat niches in the lower mesophotic zone.
Methods: Multibeam data were used to target five benthic imagery transects collected in the lower mesophotic (80–130 m) zone from the shelf edge near One Tree Island (23°S, 152°E) by using a single HD-SDI subsea camera.
Key results: Transects supported similar benthic communities in depths of 80–110 m, with the abundance of sessile benthos declining below ~110 m where the shelf break grades into the upper continental slope.
Conclusions: The effect of the Capricorn Eddy may be promoting homogeneity of benthic assemblages, because it provides similar environmental conditions and potential for connectivity. Variation in benthic communities between hard and soft substrate and differing topographic relief within the study site are likely to be influenced by variation in sedimentation, including sensitivity to suspended particles.
Implications: This study highlighted that the lower mesophotic region on the One Tree shelf edge supports mesophotic coral ecosystems that vary depending on depth and substrate
Recommended from our members
Metagenome of a Versatile Chemolithoautotroph from Expanding Oceanic Dead Zones
Oxygen minimum zones (OMZs), also known as oceanic"dead zones", are widespread oceanographic features currently expanding due to global warming and coastal eutrophication. Although inhospitable to metazoan life, OMZs support a thriving but cryptic microbiota whose combined metabolic activity is intimately connected to nutrient and trace gas cycling within the global ocean. Here we report time-resolved metagenomic analyses of a ubiquitous and abundant but uncultivated OMZ microbe (SUP05) closely related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur-oxidation and nitrate respiration responsive to a wide range of water column redox states. Thus, SUP05 plays integral roles in shaping nutrient and energy flow within oxygen-deficient oceanic waters via carbon sequestration, sulfide detoxification and biological nitrogen loss with important implications for marine productivity and atmospheric greenhouse control
Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean
Planktonic bacteria dominate surface ocean biomass and influence global biogeochemical processes, but remain poorly characterized owing to difficulties in cultivation. Using large-scale single cell genomics, we obtained insight into the genome content and biogeography of many bacterial lineages inhabiting the surface ocean. We found that, compared with existing cultures, natural bacterioplankton have smaller genomes, fewer gene duplications, and are depleted in guanine and cytosine, noncoding nucleotides, and genes encoding transcription, signal transduction, and noncytoplasmic proteins. These findings provide strong evidence that genome streamlining and oligotrophy are prevalent features among diverse, freeliving bacterioplankton, whereas existing laboratory cultures consist primarily of copiotrophs. The apparent ubiquity of metabolic specialization and mixotrophy, as predicted from single cell genomes, also may contribute to the difficulty in bacterioplankton cultivation. Using metagenome fragment recruitment against single cell genomes, we show that the global distribution of surface ocean bacterioplankton correlates with temperature and latitude and is not limited by dispersal at the time scales required for nucleotide substitution to exceed the current operational definition of bacterial species. Single cell genomes with highly similar small subunit rRNA gene sequences exhibited significant genomic and biogeographic variability, highlighting challenges in the interpretation of individual gene surveys and metagenome assemblies in environmental microbiology. Our study demonstrates the utility of single cell genomics for gaining an improved understanding of the composition and dynamics of natural microbial assemblages. comparative genomics | marine microbiology | microbial ecology | microbial microevolution | operational taxonomic uni
Development and Psychometric Validation of the Pandemic-Related Traumatic Stress Scale for Children and Adults
To assess the public health impact of the COVID-19 pandemic on mental health, investigators from the National Institutes of Health Environmental influences on Child Health Outcomes (ECHO) research program developed the Pandemic-Related Traumatic Stress Scale (PTSS). Based on the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) acute stress disorder symptom criteria, the PTSS is designed for adolescent (13–21 years) and adult self-report and caregiver-report on 3–12-year-olds. To evaluate psychometric properties, we used PTSS data collected between April 2020 and August 2021 from non-pregnant adult caregivers (n = 11,483), pregnant/postpartum individuals (n = 1,656), adolescents (n = 1,795), and caregivers reporting on 3–12-year-olds (n = 2,896). We used Mokken scale analysis to examine unidimensionality and reliability, Pearson correlations to evaluate relationships with other relevant variables, and analyses of variance to identify regional, age, and sex differences. Mokken analysis resulted in a moderately strong, unidimensional scale that retained nine of the original 10 items. We detected small to moderate positive associations with depression, anxiety, and general stress, and negative associations with life satisfaction. Adult caregivers had the highest PTSS scores, followed by adolescents, pregnant/postpartum individuals, and children. Caregivers of younger children, females, and older youth had higher PTSS scores compared to caregivers of older children, males, and younger youth, respectively
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Impact of Optimized Breastfeeding on the Costs of Necrotizing Enterocolitis in Extremely Low Birthweight Infants
To estimate risk of NEC for ELBW infants as a function of preterm formula and maternal milk (MM) intake and calculate the impact of suboptimal feeding on NEC incidence and costs
The Pragmatics of Taking a Spoken Language System
Lockheed Martin’s Advanced Technology Laboratories has been designing, developing, testing, and evaluating spoken language understanding systems in several unique operational environments over the past five years. Through these experiences we have encountered numerous challenges in making each system become an integral part of a user’s operations. In this paper, we discuss these challenges and report how we overcame them with respect to a number of domains
Design and Implementation of a Genomics Field Trip Program Aimed at Secondary School Students
<div><p>With the rapid pace of advancements in biological research brought about by the application of computer science and information technology, we believe the time is right for introducing genomics and bioinformatics tools and concepts to secondary school students. Our approach has been to offer a full-day field trip in our research facility where secondary school students carry out experiments at the laboratory bench and on a laptop computer. This experience offers benefits for students, teachers, and field trip instructors. In delivering a wide variety of science outreach and education programs, we have learned that a number of factors contribute to designing a successful experience for secondary school students. First, it is important to engage students with authentic and fun activities that are linked to real-world applications and/or research questions. Second, connecting with a local high school teacher to pilot programs and linking to curricula taught in secondary schools will enrich the field trip experience. Whether or not programs are linked directly to local teachers, it is important to be flexible and build in mechanisms for collecting feedback in field trip programs. Finally, graduate students can be very powerful mentors for students and should be encouraged to share their enthusiasm for science and to talk about career paths. Our experiences suggest a real need for effective science outreach programs at the secondary school level and that genomics and bioinformatics are ideal areas to explore.</p> </div
Topics and activities covered by the Genomics Field Trip Program.
a<p><i>Cracking the Code of Life-Teacher's Guide</i>: <a href="http://www.pbs.org/wgbh/nova/teachers/activities/2809_genome.html" target="_blank">http://www.pbs.org/wgbh/nova/teachers/activities/2809_genome.html</a>.</p
DNA Extraction from 0.22 μM Sterivex Filters and Cesium Chloride Density Gradient Centrifugation
This method is used to extract high molecular weight genomic DNA from planktonic biomass concentrated on 0.22 μM Sterivex filters that have been treated with storage/lysis buffer and archived at -80°C, and to purify this DNA using a cesium chloride density gradient. The protocol begins with two one-hour incubation steps to liberate DNA from cells and remove RNA. Next, a series of Phenol:Chloroform and Chloroform extractions are performed followed by centrifugation to remove proteins and cell membrane components, collection of the aqueous DNA extract, and several buffer exchange steps to wash and concentrate the extract. Part Five describes the optional purification via cesium chloride density gradient. It is recommended to work with less than 15 samples at one time to avoid confusion and cut down protocol time. The total time required for this protocol depends on the number of samples to be extracted. For 10-15 samples and assuming the proper centrifugation equipment is available, this entire protocol should take 3 days. Make sure you have the hybridization ovens set to temperature at the outset of the process
- …