7 research outputs found

    Integrated approach for zonation of a mid-Cenomanian carbonate reservoir in a sequence stratigraphic framework

    Get PDF
    The mid-Cenomanian Mishrif Formation (Fm.) is considered as one of the most important rudist-bearing reservoir horizons in the Sirri Oil Fields of the Persian Gulf. Due to the general heterogeneity of carbonate reservoirs, the use of an integrated approach is helpful for investigating porosity and permeability distribution along with recognizing controlling pore system factors in the reservoir. Thus, for the reservoir characterization of the Mishrif Fm., an integrated approach including facies analysis, diagenetic history and sequence stratigraphic analysis is considered. Detailed petrographic studies showed a total of eight microfacies and seven facies belts, related to inner ramp to the basin of a homoclinal carbonate ramp. Humid climatic condition and tectonic activity, associated with eustatic sea-level fluctuations during the mid-Cretaceous, led to meteoric diagenesis of the Mishrif carbonates during subaerial exposures (mid-Cenomanian and Cenomanian-Turonian disconformities). General diagenetic overprints and modifications include micritization, cementation, dissolution, compaction, dolomitization, pyritization and fracturing. Considering this reservoir in the sequence stratigraphic framework reveals that the reservoir zones development is basically related to the Cenomanian–Turonian sequence boundary, recognized in the three studied wells, and also to the mid-Cenomanian boundary, identified only in one well. In addition, pore system properties were inspected by differentiation of Hydraulic Flow Units (HFUs) within the reservoir. The identified flow units, based on their capability for fluid flow, can be classified into four main rock types with very high- (HFUD), high- (HFUC), medium- (HFUB) and low-quality (HFUA). Accordingly, this study shows that the main part of the Mishrif Reservoir is affected by diagenetic processes related to subaerial exposures, resulting in zones with higher storage capacity and fluid flow rates. So, the study of depositional and diagenetic characteristics of the Mishrif carbonates in the sequence stratigraphy framework is essential to unravel the reservoir heterogeneity, and to describe the reservoir zones and their distribution in the field and regional scale. In addition, observed changes in the thickness of hydrocarbon column are attributed to the different location of the studied wells on the anticline structures, which show a tilted oil-water contact with a slope to the North

    Integrated approach for zonation of a mid-Cenomanian carbonate reservoir in a sequence stratigraphic framework

    Get PDF
    The mid-Cenomanian Mishrif Formation (Fm.) is considered as one of the most important rudist-bearing reservoir horizons in the Sirri Oil Fields of the Persian Gulf. Due to the general heterogeneity of carbonate reservoirs, the use of an integrated approach is helpful for investigating porosity and permeability distribution along with recognizing controlling pore system factors in the reservoir. Thus, for the reservoir characterization of the Mishrif Fm., an integrated approach including facies analysis, diagenetic history and sequence stratigraphic analysis is considered. Detailed petrographic studies showed a total of eight microfacies and seven facies belts, related to inner ramp to the basin of a homoclinal carbonate ramp. Humid climatic condition and tectonic activity, associated with eustatic sea-level fluctuations during the mid-Cretaceous, led to meteoric diagenesis of the Mishrif carbonates during subaerial exposures (mid-Cenomanian and Cenomanian-Turonian disconformities). General diagenetic overprints and modifications include micritization, cementation, dissolution, compaction, dolomitization, pyritization and fracturing. Considering this reservoir in the sequence stratigraphic framework reveals that the reservoir zones development is basically related to the Cenomanian-Turonian sequence boundary, recognized in the three studied wells, and also to the mid-Cenomanian boundary, identified only in one well. In addition, pore system properties were inspected by differentiation of Hydraulic Flow Units (HFUs) within the reservoir. The identified flow units, based on their capability for fluid flow, can be classified into four main rock types with very high- (HFUD), high- (HFUC), medium- (HFUB) and low-quality (HFUA). Accordingly, this study shows that the main part of the Mishrif Reservoir is affected by diagenetic processes related to subaerial exposures, resulting in zones with higher storage capacity and fluid flow rates. So, the study of depositional and diagenetic characteristics of the Mishrif carbonates in the sequence stratigraphy framework is essential to unravel the reservoir heterogeneity, and to describe the reservoir zones and their distribution in the field and regional scale. In addition, observed changes in the thickness of hydrocarbon column are attributed to the different location of the studied wells on the anticline structures, which show a tilted oil-water contact with a slope to the Nort

    The basis of veterinary verdicts in religious signs and narratives

    No full text
    Abstract   Nowadays, due to progress in different techniques of treatment, disease prevention, surgery and implication of various facilities in veterinary sciences and today's incidental problems, and considering the determining role of veterinary sciences in providing social health of society and also securing crude different livestock products dimensions, slaughter and various infected problems in slaughter-house and … more and more it seems that one could not be certain and assured or it should have asked religions problems for explanation of the new dimensions, for assuring the consumers to their healthy and hygienic livestock and attracting sufficient trust from point view of religious law. In this study, in addition to research in koranic resources, religious traditions and narratives the opinions of grand religious imitation references in the point of new topic problems will be sought

    Integrated approach for zonation of a mid-Cenomanian carbonate reservoir in a sequence stratigraphic framework

    No full text
    The mid-Cenomanian Mishrif Formation (Fm.) is considered as one of the most important rudist-bearing reservoir horizons in the Sirri Oil Fields of the Persian Gulf. Due to the general heterogeneity of carbonate reservoirs, the use of an integrated approach is helpful for investigating porosity and permeability distribution along with recognizing controlling pore system factors in the reservoir. Thus, for the reservoir characterization of the Mishrif Fm., an integrated approach including facies analysis, diagenetic history and sequence stratigraphic analysis is considered. Detailed petrographic studies showed a total of eight microfacies and seven facies belts, related to inner ramp to the basin of a homoclinal carbonate ramp. Humid climatic condition and tectonic activity, associated with eustatic sea-level fluctuations during the mid-Cretaceous, led to meteoric diagenesis of the Mishrif carbonates during subaerial exposures (mid-Cenomanian and Cenomanian-Turonian disconformities). General diagenetic overprints and modifications include micritization, cementation, dissolution, compaction, dolomitization, pyritization and fracturing. Considering this reservoir in the sequence stratigraphic framework reveals that the reservoir zones development is basically related to the Cenomanian-Turonian sequence boundary, recognized in the three studied wells, and also to the mid-Cenomanian boundary, identified only in one well. In addition, pore system properties were inspected by differentiation of Hydraulic Flow Units (HFUs) within the reservoir. The identified flow units, based on their capability for fluid flow, can be classified into four main rock types with very high- (HFUD), high- (HFUC), medium- (HFUB) and low-quality (HFUA). Accordingly, this study shows that the main part of the Mishrif Reservoir is affected by diagenetic processes related to subaerial exposures, resulting in zones with higher storage capacity and fluid flow rates. So, the study of depositional and diagenetic characteristics of the Mishrif carbonates in the sequence stratigraphy framework is essential to unravel the reservoir heterogeneity, and to describe the reservoir zones and their distribution in the field and regional scale. In addition, observed changes in the thickness of hydrocarbon column are attributed to the different location of the studied wells on the anticline structures, which show a tilted oil-water contact with a slope to the Nort

    Investigation of Underground Sour Gas Storage in a Depleted Gas Reservoir

    No full text
    Underground Gas Storage (UGS) involves storage of large quantities of natural gas to support the natural gas demand in domestic, commercial and industrial areas. Storage of sour gas can be advantageous from economic standpoint, as it reduces treatment costs and increases the potential of production from shared reservoirs. This paper investigates feasibility of UGS in one of Iranian depleted fractured gas condensate reservoirs. Compositional simulation was employed to build dynamic reservoir model, develop the history matching phase of the reservoir and construct Injection/Withdrawal (I/W) cycles. One sweet gas stream and three sour gas streams with different compositions were tested for storage into reservoir during summer season. Results of simulation showed that presence of H2S and CO2 in the injected gas stream improves condensate production. Condensate Production Enhancement (CPE), defined as the percentage of condensate recovery increase due to sour gas injection relative to the sweet gas injection, was calculated for different compositions of storage gas. Also, Condensate Holding Ratio (CHR), defined as the ratio of condensate in the withdrawn sour gas to that in the withdrawn CH4, was estimated for different storage gas compositions. Results showed that CPE has a higher rate in earlier cycles and declines at later cycles. CHR is higher for sour gas storage compared to sweet gas. Furthermore, heating value of produced gas was calculated in all I/W cycles and compared with heating value of injected gas. It was indicated that difference between heating value of produced and injected gas increases with increase of H2S and CO2 content of the injected gas. Also, it was found that the reservoir has lower pressure rise at the end of I/W cycles in the case of underground sour gas storage compared to sweet gas storage. The presence of acid gas components decreases the z-factor of injected gas stream resulting in smaller difference between z-factors of injected gas and reservoir fluid
    corecore