189 research outputs found
Stepwise acquisition of unique epigenetic signatures during differentiation of tissue Treg cells
Regulatory T cells in non-lymphoid tissues are not only critical for maintaining self-tolerance, but are also important for promoting organ homeostasis and tissue repair. It is proposed that the generation of tissue Treg cells is a stepwise, multi-site process, accompanied by extensive epigenome remodeling, finally leading to the acquisition of unique tissue-specific epigenetic signatures. This process is initiated in the thymus, where Treg cells acquire core phenotypic and functional properties, followed by a priming step in secondary lymphoid organs that permits Treg cells to exit the lymphoid organs and seed into non-lymphoid tissues. There, a final specialization process takes place in response to unique microenvironmental cues in the respective tissue. In this review, we will summarize recent findings on this multi-site tissue Treg cell differentiation and highlight the importance of epigenetic remodeling during these stepwise events
The role of regulatory T cells in antigen-induced arthritis: aggravation of arthritis after depletion and amelioration after transfer of CD4(+)CD25(+ )T cells
It is now generally accepted that CD4(+)CD25(+ )T(reg )cells play a major role in the prevention of autoimmunity and pathological immune responses. Their involvement in the pathogenesis of chronic arthritis is controversial, however, and so we examined their role in experimental antigen-induced arthritis in mice. Depletion of CD25-expressing cells in immunized animals before arthritis induction led to increased cellular and humoral immune responses to the inducing antigen (methylated bovine serum albumin; mBSA) and autoantigens, and to an exacerbation of arthritis, as indicated by clinical (knee joint swelling) and histological scores. Transfer of CD4(+)CD25(+ )cells into immunized mice at the time of induction of antigen-induced arthritis decreased the severity of disease but was not able to cure established arthritis. No significant changes in mBSA-specific immune responses were detected. In vivo migration studies showed a preferential accumulation of CD4(+)CD25(+ )cells in the inflamed joint as compared with CD4(+)CD25(- )cells. These data imply a significant role for CD4(+)CD25(+ )T(reg )cells in the control of chronic arthritis. However, transferred T(reg )cells appear to be unable to counteract established acute or chronic inflammation. This is of considerable importance for the timing of T(reg )cell transfer in potential therapeutic applications
Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease
The scurfy mutant mouse strain suffers from a fatal lymphoproliferative disease leading to early death within 3–4 wk of age. A frame-shift mutation of the forkhead box transcription factor Foxp3 has been identified as the molecular cause of this multiorgan autoimmune disease. Foxp3 is a central control element in the development and function of regulatory T cells (T reg cells), which are necessary for the maintenance of self-tolerance. However, it is unclear whether dysfunction or a lack of T reg cells is etiologically involved in scurfy pathogenesis and its human correlate, the IPEX syndrome. We describe the generation of bacterial artificial chromosome–transgenic mice termed “depletion of regulatory T cell” (DEREG) mice expressing a diphtheria toxin (DT) receptor–enhanced green fluorescent protein fusion protein under the control of the foxp3 gene locus, allowing selective and efficient depletion of Foxp3+ T reg cells by DT injection. Ablation of Foxp3+ T reg cells in newborn DEREG mice led to the development of scurfy-like symptoms with splenomegaly, lymphadenopathy, insulitis, and severe skin inflammation. Thus, these data provide experimental evidence that the absence of Foxp3+ T reg cells is indeed sufficient to induce a scurfy-like phenotype. Furthermore, DEREG mice will allow a more precise definition of the function of Foxp3+ T reg cells in immune reactions in vivo
Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells Reveals a Very Dynamic Regulation of Foxp3 Expression
The IL-2/JAK3/STAT-5 signaling pathway is involved on the initiation and
maintenance of the transcription factor Foxp3 in regulatory T cells (Treg) and
has been associated with demethylation of the intronic Conserved Non Coding
Sequence-2 (CNS2). However, the role of the JAK/STAT pathway in controlling
Foxp3 in the short term has been poorly investigated. Using two different
JAK/STAT pharmacological inhibitors, we observed a detectable loss of Foxp3
after 10 min. of treatment that affected 70% of the cells after one hour.
Using cycloheximide, a general inhibitor of mRNA translation, we determined
that Foxp3, but not CD25, has a high turnover in IL-2 stimulated Treg. This
reduction was correlated with a rapid reduction of Foxp3 mRNA. This loss of
Foxp3 was associated with a loss in STAT-5 binding to the CNS2, which however
remains demethylated. Consequently, Foxp3 expression returns to normal level
upon restoration of basal JAK/STAT signaling in vivo. Reduced expression of
several genes defining Treg identity was also observed upon treatment. Thus,
our results demonstrate that Foxp3 has a rapid turn over in Treg partly
controlled at the transcriptional level by the JAK/STAT pathway
The guanine-nucleotide exchange factor CalDAG GEFI fine-tunes functional properties of regulatory T cells
Using quantitative phosphopeptide sequencing of unstimulated versus stimulated primary murine Foxp3(+) regulatory and Foxp3(-) conventional T cells (Tregs and Tconv, respectively), we detected a novel and differentially regulated tyrosine phosphorylation site within the C1 domain of the guanine-nucleotide exchange factor CalDAG GEFI. We hypothesized that the Treg-specific and activation-dependent reduced phosphorylation at Y523 allows binding of CalDAG GEFI to diacylglycerol, thereby impacting the formation of a Treg-specific immunological synapse. However, diacylglycerol binding assays of phosphomutant C1 domains of CalDAG GEFI could not confirm this hypothesis. Moreover, CalDAG GEFI(-/-) mice displayed normal Treg numbers in thymus and secondary lymphoid organs, and CalDAG GEFI(-/-) Tregs showed unaltered in vitro suppressive capacity when compared to CalDAG GEFI(+/+) Tregs. Interestingly, when tested in vivo, CalDAG GEFI(-/-) Tregs displayed a slightly reduced suppressive ability in the transfer colitis model when compared to CalDAG GEFI(+/+) Tregs. Additionally, CRISPR-Cas9-generated CalDAG GEFI(-/-) Jurkat T cell clones showed reduced adhesion to ICAM-1 and fibronectin when compared to CalDAG GEFI-competent Jurkat T cells. Therefore, we speculate that deficiency in CalDAG GEFI impairs adherence of Tregs to antigen-presenting cells, thereby impeding formation of a fully functional immunological synapse, which finally results in a reduced suppressive potential
Yersinia pseudotuberculosis supports Th17 differentiation and limits de novo regulatory T cell induction by directly interfering with T cell receptor signaling
Adaptive immunity critically contributes to control acute infection with enteropathogenic Yersinia pseudotuberculosis; however, the role of CD4(+) T cell subsets in establishing infection and allowing pathogen persistence remains elusive. Here, we assessed the modulatory capacity of Y. pseudotuberculosis on CD4(+) T cell differentiation. Using in vivo assays, we report that infection with Y. pseudotuberculosis resulted in enhanced priming of IL-17-producing T cells (Th17 cells), whereas induction of Foxp3(+) regulatory T cells (Tregs) was severely disrupted in gut-draining mesenteric lymph nodes (mLNs), in line with altered frequencies of tolerogenic and proinflammatory dendritic cell (DC) subsets within mLNs. Additionally, by using a DC-free in vitro system, we could demonstrate that Y. pseudotuberculosis can directly modulate T cell receptor (TCR) downstream signaling within naïve CD4(+) T cells and Tregs via injection of effector molecules through the type III secretion system, thereby affecting their functional properties. Importantly, modulation of naïve CD4(+) T cells by Y. pseudotuberculosis resulted in an enhanced Th17 differentiation and decreased induction of Foxp3(+) Tregs in vitro. These findings shed light to the adjustment of the Th17-Treg axis in response to acute Y. pseudotuberculosis infection and highlight the direct modulation of CD4(+) T cell subsets by altering their TCR downstream signaling
Integrin αE(CD103) Is Involved in Regulatory T-Cell Function in Allergic Contact Hypersensitivity
Murine contact hypersensitivity (CHS) is a dendritic cell (DC)-dependent T-cell-mediated inflammation with CD8+ T cells as effectors and CD4+ T cells as regulators (Treg cells) that models human allergic contact dermatitis. The integrin αE(CD103) is expressed by some T-cell and DC subsets and has been implicated in epithelial lymphocyte localization, but its role in immune regulation remains enigmatic. We have identified a function for CD103 in the development of cutaneous allergic immune responses. CHS responses, but not irritant contact dermatitis, were significantly augmented in CD103-deficient mice in hapten-challenged skin. Phenotype and function of skin DCs during sensitization were normal, whereas adoptive transfer experiments revealed that the elevated CHS response in CD103-deficient mice is transferred by primed T cells and is independent of resident cells in recipient mice. While T-cell counts were elevated in challenged skin of CD103-deficient mice, the FoxP3 expression level of CD4+CD25+ Treg cells was significantly reduced, indicating impaired functionality. Indeed, Treg cells from CD103-deficient mice were not able to suppress CHS reactions during the elicitation phase. Further, CD103 on FoxP3+ Treg cells was involved in Treg retention to inflamed skin. These findings indicate an unexpected dichotomous functional role for CD103 on Treg cells by modulating FoxP3 expression
mir-181A/B-1 controls thymic selection of treg cells and tunes their suppressive capacity
The interdependence of selective cues during development of regulatory T cells (Treg cells) in the thymus and their suppressive function remains incompletely understood. Here, we analyzed this interdependence by taking advantage of highly dynamic changes in expression of microRNA 181 family members miR-181a-1 and miR-181b-1 (miR-181a/b-1) during late T-cell development with very high levels of expression during thymocyte selection, followed by massive down-regulation in the periphery. Loss of miR-181a/b-1 resulted in inefficient de novo generation of Treg cells in the thymus but simultaneously permitted homeostatic expansion in the periphery in the absence of competition. Modulation of T-cell receptor (TCR) signal strength in vivo indicated that miR-181a/b-1 controlled Treg-cell formation via establishing adequate signaling thresholds. Unexpectedly, miR-181a/b-1–deficient Treg cells displayed elevated suppressive capacity in vivo, in line with elevated levels of cytotoxic T-lymphocyte–associated 4 (CTLA-4) protein, but not mRNA, in thymic and peripheral Treg cells. Therefore, we propose that intrathymic miR-181a/b-1 controls development of Treg cells and imposes a developmental legacy on their peripheral function
IFN-γ Producing Th1 Cells Induce Different Transcriptional Profiles in Microglia and Astrocytes
Autoreactive T cells that infiltrate into the central nervous system (CNS) are believed to have a significant role in mediating the pathology of neuroinflammatory diseases like multiple sclerosis. Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of neuroinflammatory processes. Our previous work demonstrated that effectors secreted by Th1 and Th17 cells have different capacities to influence the phenotype and function of glial cells. We have shown that Th1-derived effectors altered the phenotype and function of both microglia and astrocytes whereas Th17-derived effectors induced direct effects only on astrocytes but not on microglia. Here we investigated if effector molecules associated with IFN-γ producing Th1 cells induced different gene expression profiles in microglia and astrocytes. We performed a microarray analysis of RNA isolated from microglia and astrocytes treated with medium and Th-derived culture supernatants and compared the gene expression data. By using the criteria of 2-fold change and a false discovery rate of 0.01 (corrected p < 0.01), we demonstrated that a total of 2,106 and 1,594 genes were differentially regulated in microglia and astrocytes, respectively, in response to Th1-derived factors. We observed that Th1-derived effectors induce distinct transcriptional changes in microglia and astrocytes in addition to commonly regulated transcripts. These distinct transcriptional changes regulate peculiar physiological functions, and this knowledge can help to better understand T cell mediated neuropathologies
Limited role of regulatory T cells during acute Theiler virus-induced encephalitis in resistant C57BL/6 mice
Background:
Theiler's murine encephalomyelitis virus (TMEV) infection represents a commonly used infectious animal model to study various aspects of the pathogenesis of multiple sclerosis (MS). In susceptible SJL mice, dominant activity of Foxp3+ CD4+ regulatory T cells (Tregs) in the CNS partly contributes to viral persistence and progressive demyelination. On the other hand, resistant C57BL/6 mice rapidly clear the virus by mounting a strong antiviral immune response. However, very little is known about the role of Tregs in regulating antiviral responses during acute encephalitis in resistant mouse strains.
Methods:
In this study, we used DEREG mice that express the diphtheria toxin (DT) receptor under control of the foxp3 locus to selectively deplete Foxp3+ Tregs by injection of DT prior to infection and studied the effect of Treg depletion on the course of acute Theiler's murine encephalomyelitis (TME).
Results:
As expected, DEREG mice that are on a C57BL/6 background were resistant to TMEV infection and cleared the virus within days of infection, regardless of the presence or absence of Tregs. Nevertheless, in the absence of Tregs we observed priming of stronger effector T cell responses in the periphery, which subsequently resulted in a transient increase in the frequency of IFNγ-producing T cells in the brain at an early stage of infection. Histological and flow cytometric analysis revealed that this transiently increased frequency of brain-infiltrating IFNγ-producing T cells in Treg-depleted mice neither led to an augmented antiviral response nor enhanced inflammation-mediated tissue damage. Intriguingly, Treg depletion did not change the expression of IL-10 in the infected brain, which might play a role for dampening the inflammatory damage caused by the increased number of effector T cells.
Conclusion:
We therefore propose that unlike susceptible mice strains, interfering with the Treg compartment of resistant mice only has negligible effects on virus-induced pathologies in the CNS. Furthermore, in the absence of Tregs, local anti-inflammatory mechanisms might limit the extent of damage caused by strong anti-viral response in the CNS
- …