135 research outputs found

    Non-communicating syringomyelia: a feature of spinal cord involvement in multiple sclerosis

    Get PDF
    In patients with multiple sclerosis (MS) non-communicating syringomyelia (NCS) has been described as an incidental finding in case studies and small case series. NCS in MS patients commonly leads to uncertainty particularly as the clinical picture of NCS is variable and surgical therapy may be considered. Up to date little is known about the prevalence and clinical importance of NCS in MS. We report the imaging and clinical characteristics of NCS formations in nine MS patients from a 1 year follow-up study in a representative group of 202 MS (4.5%) patients. Brain and spinal cord MRI was performed as part of a genetic study. NCS did commonly extend the central canal and the cord was slightly distended at the level of the syrinx. The cord and syrinx showed no tendency to change in size or shape over 1 year. Despite thorough search into the clinical history and current clinical status no definite but only minimal indications of symptoms potentially related to the NCS were found. We confirm that NCS may occur in MS patients with spinal cord pathology. It can be a subtle finding without clinical correlates. Syrinx formations are more likely to be a consequence of MS cord pathology than a coincidental findin

    Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney

    Get PDF
    Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney.BackgroundK+ channels have important functions in the kidney, such as maintenance of the membrane potential, volume regulation, recirculation, and secretion of potassium ions. The aim of this study was to obtain more information on the localization and possible functional role of the inwardly rectifying K+ channel, Kir7.1.MethodsKir7.1 cDNA (1114 bp) was isolated from guinea pig kidney (gpKir7.1), and its tissue distribution was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, a genomic DNA fragment (6153 bp) was isolated from a genomic library. cRNA was expressed in Xenopus laevis oocytes for functional studies. Immunohistochemistry and RT-PCR were used to localize Kir7.1 in guinea pig and human kidney.ResultsThe expression of gpKir7.1 in Xenopus laevis oocytes revealed inwardly rectifying K+ currents. The reversal potential was strongly dependent on the extracellular K+ concentration, shifting from -14 mV at 96 mmol/L K+ to -90 mV at 1 mmol/L K+. gpKir7.1 showed a low affinity for Ba2+. Significant expression of gpKir7.1 was found in brain, kidney, and lung, but not in heart, skeletal muscle, liver, or spleen. Immunocytochemical detection in guinea pig identified the gpKir7.1 protein in the basolateral membrane of epithelial cells of the proximal tubule. RT-PCR analysis identified strong gpKir7.1 expression in the proximal tubule and weak expression in glomeruli and thick ascending limb. In isolated human tubule fragments, RT-PCR showed expression in proximal tubule and thick ascending limb.ConclusionOur results suggest that Kir7.1 may contribute to basolateral K+ recycling in the proximal tubule and in the thick ascending limb

    Genotypic resistance testing in HIV by arrayed primer extension

    Get PDF
    The analysis of mutations that are associated with the occurrence of drug resistance is important for monitoring the antiretroviral therapy of patients infected with human immunodeficiency virus (HIV). Here, we describe the establishment and successful application of Arrayed Primer Extension (APEX) for genotypic resistance testing in HIV as a rapid and economical alternative to standard sequencing. The assay is based on an array of oligonucleotide primers that are immobilised via their 5′-ends. Upon hybridisation of template DNA, a primer extension reaction is performed in the presence of the four dideoxynucleotides, each labelled with a distinct fluorophore. The inserted label immediately indicates the sequence at the respective position. Any mutation changes the colour pattern. We designed a microarray for the analysis of 26 and 33 codons in the HIV protease and reverse transcriptase, respectively, which are of special interest with respect to drug resistance. The enormous genome variability of HIV represents a big challenge for genotypic resistance tests, which include a hybridisation step, both in terms of specificity and probe numbers. The use of degenerated oligonucleotides resulted in a significant reduction in the number of primers needed. For validation, DNA of 94 and 48 patients that exhibited resistance to inhibitors of HIV protease and reverse transcriptase, respectively, were analysed. The validation included HIV subtype B, prevalent in industrialised countries, as well as non-subtype B samples that are more common elsewhere

    Dual Lipolytic Control of Body Fat Storage and Mobilization in Drosophila

    Get PDF
    Energy homeostasis is a fundamental property of animal life, providing a genetically fixed balance between fat storage and mobilization. The importance of body fat regulation is emphasized by dysfunctions resulting in obesity and lipodystrophy in humans. Packaging of storage fat in intracellular lipid droplets, and the various molecules and mechanisms guiding storage-fat mobilization, are conserved between mammals and insects. We generated a Drosophila mutant lacking the receptor (AKHR) of the adipokinetic hormone signaling pathway, an insect lipolytic pathway related to ß-adrenergic signaling in mammals. Combined genetic, physiological, and biochemical analyses provide in vivo evidence that AKHR is as important for chronic accumulation and acute mobilization of storage fat as is the Brummer lipase, the homolog of mammalian adipose triglyceride lipase (ATGL). Simultaneous loss of Brummer and AKHR causes extreme obesity and blocks acute storage-fat mobilization in flies. Our data demonstrate that storage-fat mobilization in the fly is coordinated by two lipocatabolic systems, which are essential to adjust normal body fat content and ensure lifelong fat-storage homeostasis

    Deep Sequencing of MYC DNA-Binding Sites in Burkitt Lymphoma

    Get PDF
    BACKGROUND: MYC is a key transcription factor involved in central cellular processes such as regulation of the cell cycle, histone acetylation and ribosomal biogenesis. It is overexpressed in the majority of human tumors including aggressive B-cell lymphoma. Especially Burkitt lymphoma (BL) is a highlight example for MYC overexpression due to a chromosomal translocation involving the c-MYC gene. However, no genome-wide analysis of MYC-binding sites by chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) has been conducted in BL so far. METHODOLOGY/PRINCIPAL FINDINGS: ChIP-Seq was performed on 5 BL cell lines with a MYC-specific antibody giving rise to 7,054 MYC-binding sites after bioinformatics analysis of a total of approx. 19 million sequence reads. In line with previous findings, binding sites accumulate in gene sets known to be involved in the cell cycle, ribosomal biogenesis, histone acetyltransferase and methyltransferase complexes demonstrating a regulatory role of MYC in these processes. Unexpectedly, MYC-binding sites also accumulate in many B-cell relevant genes. To assess the functional consequences of MYC binding, the ChIP-Seq data were supplemented with siRNA- mediated knock-downs of MYC in BL cell lines followed by gene expression profiling. Interestingly, amongst others, genes involved in the B-cell function were up-regulated in response to MYC silencing. CONCLUSION/SIGNIFICANCE: The 7,054 MYC-binding sites identified by our ChIP-Seq approach greatly extend the knowledge regarding MYC binding in BL and shed further light on the enormous complexity of the MYC regulatory network. Especially our observations that (i) many B-cell relevant genes are targeted by MYC and (ii) that MYC down-regulation leads to an up-regulation of B-cell genes highlight an interesting aspect of BL biology

    Outcome Prediction in Pneumonia Induced ALI/ARDS by Clinical Features and Peptide Patterns of BALF Determined by Mass Spectrometry

    Get PDF
    BACKGROUND: Peptide patterns of bronchoalveolar lavage fluid (BALF) were assumed to reflect the complex pathology of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) better than clinical and inflammatory parameters and may be superior for outcome prediction. METHODOLOGY/PRINCIPAL FINDINGS: A training group of patients suffering from ALI/ARDS was compiled from equal numbers of survivors and nonsurvivors. Clinical history, ventilation parameters, Murray's lung injury severity score (Murray's LISS) and interleukins in BALF were gathered. In addition, samples of bronchoalveolar lavage fluid were analyzed by means of hydrophobic chromatography and MALDI-ToF mass spectrometry (MALDI-ToF MS). Receiver operating characteristic (ROC) analysis for each clinical and cytokine parameter revealed interleukin-6>interleukin-8>diabetes mellitus>Murray's LISS as the best outcome predictors. Outcome predicted on the basis of BALF levels of interleukin-6 resulted in 79.4% accuracy, 82.7% sensitivity and 76.1% specificity (area under the ROC curve, AUC, 0.853). Both clinical parameters and cytokines as well as peptide patterns determined by MALDI-ToF MS were analyzed by classification and regression tree (CART) analysis and support vector machine (SVM) algorithms. CART analysis including Murray's LISS, interleukin-6 and interleukin-8 in combination was correct in 78.0%. MALDI-ToF MS of BALF peptides did not reveal a single identifiable biomarker for ARDS. However, classification of patients was successfully achieved based on the entire peptide pattern analyzed using SVM. This method resulted in 90% accuracy, 93.3% sensitivity and 86.7% specificity following a 10-fold cross validation (AUC = 0.953). Subsequent validation of the optimized SVM algorithm with a test group of patients with unknown prognosis yielded 87.5% accuracy, 83.3% sensitivity and 90.0% specificity. CONCLUSIONS/SIGNIFICANCE: MALDI-ToF MS peptide patterns of BALF, evaluated by appropriate mathematical methods can be of value in predicting outcome in pneumonia induced ALI/ARDS

    Local circuits targeting parvalbumin-containing interneurons in layer IV of rat barrel cortex

    Get PDF
    Interactions between inhibitory interneurons and excitatory spiny neurons and also other inhibitory cells represent fundamental network properties which cause the so-called thalamo-cortical response transformation and account for the well-known receptive field differences of cortical layer IV versus thalamic neurons. We investigated the currently largely unknown morphological basis of these interactions utilizing acute slice preparations of barrel cortex in P19-21 rats. Layer IV spiny (spiny stellate, star pyramidal and pyramidal) neurons or inhibitory (basket and bitufted) interneurons were electrophysiologically characterized and intracellularly biocytin-labeled. In the same slice, we stained parvalbumin-immunoreactive (PV-ir) interneurons as putative target cells after which the tissue was subjected to confocal image acquisition. Parallel experiments confirmed the existence of synaptic contacts in these types of connection by correlated light and electron microscopy. The axons of the filled neurons differentially targeted barrel PV-ir interneurons: (1) The relative number of all contacted PV-ir cells within the axonal sphere was 5–17% for spiny (n = 10), 32 and 58% for basket (n = 2) and 12 and 13% for bitufted (n = 2) cells. (2) The preferential subcellular site which was contacted on PV-ir target cells was somatic for four and dendritic for five spiny cells; for basket cells, there was a somatic and for bitufted cells a dendritic preference in each examined case. (3) The highest number of contacts on a single PV-ir cell was 9 (4 somatic and 5 dendritic) for spiny neurons, 15 (10 somatic and 5 dendritic) for basket cells and 4 (1 somatic and 3 dendritic) for bitufted cells. These patterns suggest a cell type-dependent communication within layer IV microcircuits in which PV-ir interneurons provide not only feed-forward but also feedback inhibition thus triggering the thalamo-cortical response transformation
    corecore