39 research outputs found

    Non-communicating syringomyelia: a feature of spinal cord involvement in multiple sclerosis

    Get PDF
    In patients with multiple sclerosis (MS) non-communicating syringomyelia (NCS) has been described as an incidental finding in case studies and small case series. NCS in MS patients commonly leads to uncertainty particularly as the clinical picture of NCS is variable and surgical therapy may be considered. Up to date little is known about the prevalence and clinical importance of NCS in MS. We report the imaging and clinical characteristics of NCS formations in nine MS patients from a 1 year follow-up study in a representative group of 202 MS (4.5%) patients. Brain and spinal cord MRI was performed as part of a genetic study. NCS did commonly extend the central canal and the cord was slightly distended at the level of the syrinx. The cord and syrinx showed no tendency to change in size or shape over 1 year. Despite thorough search into the clinical history and current clinical status no definite but only minimal indications of symptoms potentially related to the NCS were found. We confirm that NCS may occur in MS patients with spinal cord pathology. It can be a subtle finding without clinical correlates. Syrinx formations are more likely to be a consequence of MS cord pathology than a coincidental findin

    Deep Sequencing of MYC DNA-Binding Sites in Burkitt Lymphoma

    Get PDF
    BACKGROUND: MYC is a key transcription factor involved in central cellular processes such as regulation of the cell cycle, histone acetylation and ribosomal biogenesis. It is overexpressed in the majority of human tumors including aggressive B-cell lymphoma. Especially Burkitt lymphoma (BL) is a highlight example for MYC overexpression due to a chromosomal translocation involving the c-MYC gene. However, no genome-wide analysis of MYC-binding sites by chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) has been conducted in BL so far. METHODOLOGY/PRINCIPAL FINDINGS: ChIP-Seq was performed on 5 BL cell lines with a MYC-specific antibody giving rise to 7,054 MYC-binding sites after bioinformatics analysis of a total of approx. 19 million sequence reads. In line with previous findings, binding sites accumulate in gene sets known to be involved in the cell cycle, ribosomal biogenesis, histone acetyltransferase and methyltransferase complexes demonstrating a regulatory role of MYC in these processes. Unexpectedly, MYC-binding sites also accumulate in many B-cell relevant genes. To assess the functional consequences of MYC binding, the ChIP-Seq data were supplemented with siRNA- mediated knock-downs of MYC in BL cell lines followed by gene expression profiling. Interestingly, amongst others, genes involved in the B-cell function were up-regulated in response to MYC silencing. CONCLUSION/SIGNIFICANCE: The 7,054 MYC-binding sites identified by our ChIP-Seq approach greatly extend the knowledge regarding MYC binding in BL and shed further light on the enormous complexity of the MYC regulatory network. Especially our observations that (i) many B-cell relevant genes are targeted by MYC and (ii) that MYC down-regulation leads to an up-regulation of B-cell genes highlight an interesting aspect of BL biology

    Outcome Prediction in Pneumonia Induced ALI/ARDS by Clinical Features and Peptide Patterns of BALF Determined by Mass Spectrometry

    Get PDF
    BACKGROUND: Peptide patterns of bronchoalveolar lavage fluid (BALF) were assumed to reflect the complex pathology of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) better than clinical and inflammatory parameters and may be superior for outcome prediction. METHODOLOGY/PRINCIPAL FINDINGS: A training group of patients suffering from ALI/ARDS was compiled from equal numbers of survivors and nonsurvivors. Clinical history, ventilation parameters, Murray's lung injury severity score (Murray's LISS) and interleukins in BALF were gathered. In addition, samples of bronchoalveolar lavage fluid were analyzed by means of hydrophobic chromatography and MALDI-ToF mass spectrometry (MALDI-ToF MS). Receiver operating characteristic (ROC) analysis for each clinical and cytokine parameter revealed interleukin-6>interleukin-8>diabetes mellitus>Murray's LISS as the best outcome predictors. Outcome predicted on the basis of BALF levels of interleukin-6 resulted in 79.4% accuracy, 82.7% sensitivity and 76.1% specificity (area under the ROC curve, AUC, 0.853). Both clinical parameters and cytokines as well as peptide patterns determined by MALDI-ToF MS were analyzed by classification and regression tree (CART) analysis and support vector machine (SVM) algorithms. CART analysis including Murray's LISS, interleukin-6 and interleukin-8 in combination was correct in 78.0%. MALDI-ToF MS of BALF peptides did not reveal a single identifiable biomarker for ARDS. However, classification of patients was successfully achieved based on the entire peptide pattern analyzed using SVM. This method resulted in 90% accuracy, 93.3% sensitivity and 86.7% specificity following a 10-fold cross validation (AUC = 0.953). Subsequent validation of the optimized SVM algorithm with a test group of patients with unknown prognosis yielded 87.5% accuracy, 83.3% sensitivity and 90.0% specificity. CONCLUSIONS/SIGNIFICANCE: MALDI-ToF MS peptide patterns of BALF, evaluated by appropriate mathematical methods can be of value in predicting outcome in pneumonia induced ALI/ARDS

    Diffusion-Weighted and Diffusion Tensor Imaging in MR Tomography - Sequence Development and Optimization Focusing on Clinical Applications

    No full text
    The importance of Magnetic Resonance Tomography (MRT) arises from the high frequency of water protons in living tissue, the non-invasiveness of the technique and the straightforward spatial encoding of protons by means of additional locally varying magnetic field gradients. During the last two decades, diffusion-weighted imaging (DWI) has added an essential contribution to clinical MR tomography of structural T1- and T2-weighted imaging and to mapping of physiological processes like perfusion and functional activity. DWI uses the self-diffusion (Brownian motion) of water molecules in an inhomogeneous static magnetic field that can be encoded by locally dependent gradient fields. The key feature and importance of MR-DWI results from the fact that the random translatory motion of molecules scans the microscopic tissue structures far beyond the spatial resolution of MR imaging techniques. Furthermore, diffusion as a physical process is independent of magnetic resonance phenomena, but offers similar advantages like high contrast and spatial resolution. The intent of this dissertation covers projects of sequence development and optimization of clinical DWI applications that illustrate the fast evolving development of DWI in medical MR imaging. One focus is set on the combination of DW echo-planar imaging (EPI) and the fluid-attenuated inversion recovery (FLAIR) prepa¬ration. After technical validation, issues of measurement accuracy and signal-to-noise ratio and their implications on estimated contrast parameters like diffusion anisotropy are discussed. A proposed correction term enables immediate acquisition and comparison of standard DW-EPI and FLAIR-DWI in volunteer and patient studies. A preliminary study on patients with astrocytoma reveals the advantages of FLAIR-prepared DW imaging protocols. The second topic of this dissertation explores the extension of the linear diffusion tensor model to high angular resolution DWI (HARDI). The high complexity of white matter fiber structures limits the linear DTI model and requires improved acquisition schemes as well as enhanced quantitative estimates. An approach for visualizing deviations from the linear DT model by means of 2D polar and contour plots is proposed. Additionally, four examples of clinical protocols are described in detail showing important current contribu¬tions of methodological developments in DW and DT imaging. Neurological diagnostic questions concerning early stroke dynamics, transient global amnesia, and side effects of electroconvulsive therapy require a robust DWI strategy that is independent of diffusion anisotropy, whereas the directional information of diffusion tensor imaging enables the delineation of main white matter fiber tracts and a reliable description of small focal lacunar infarct lesions. This adds important diagnostic details to the patient s symptoms and prognosis. The stimulus to improvements and innovations in the field of DW MRI and all post-processing disciplines is still unbowed. Improved technical aspects of MR scanners like higher field strength, parallel acquisition techniques and development of alternative effective sampling strategies allow continuously improving image quality, stronger diffusion weighting and/or the realization of theoretically desired DW schemes of pulsed, short and strong DW gradients. On the other side, recent progress and increased benefits of post-processing strategies contribute essentially to the visualization of processed diffusion tensor data. The techniques of tracking algorithms, formerly based on the linear DT model and today extended to tensors of higher order and probabilistic algorithms, suggest the visualization of structural connectivity across fiber tracts. Merging these analyses with functional connectivity studies and other physiological data assigns DTI a small, yet important role in the investigation of human brain structure and function

    Reduced functional reserve in patients with age-related white matter changes: a preliminary FMRI study of working memory.

    No full text
    Subcortical age-related white matter changes (ARWMC) are a frequent finding in healthy elderly people suggested to cause secondary tissue changes and possibly affecting cognitive processes. We aimed to determine the influence of the extent of ARWMC load on attention and working memory processes in healthy elderly individuals. Fourteen healthy elderly subjects (MMSE >26; age 55-80 years) performed three fMRI tasks with increasing difficulty assessing alertness, attention (0-back), and working memory (2-back). We compared activation patterns in those with only minimal ARWMC (Fazekas 0-1) to those with moderate to severe ARWMC (Fazekas 2-3). During the fMRI experiments, the study population showed activation in brain areas typically involved in attention and working memory with a recruitment of cortical areas with increasing task difficulty. Subjects with higher lesion load showed a higher activation at all task levels with only sparse increase of signal with increasing complexity. In the lower lesion load group, rising task difficulty lead to a significant and widely distributed increase of activation. Although the number of patients included in the study is small, these findings suggest that even clinically silent ARWMC may affect cognitive processing and lead to compensatory activation during cognitive tasks. This can be interpreted as a reduction of functional reserve and may pose a risk for cognitive decline in these patients

    fMRI main effects.

    Get PDF
    <p>Group activation map over all subjects for the three different tasks alertness (A), 0-back (B), and 2-back (C) (Z>3.3, corrected p<0.01). Statistical maps are superimposed onto the MNI structural template. All MR Images shown here are in radiological order (image left is anatomical right).</p
    corecore