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Abstract— A cheap and easy to use monitoring device that 

can be used within the athletics sprinting community is being 

developed.  A device which enables coaches to monitor key 

features of an athlete’s sprint start, allowing the effect of any 

technical adjustments made to be examined closely, could be used 

as a tool to assist in an athlete’s development of a more optimsed 

performance.  Whilst wireless inertial measurement units have 

been used successfully to monitor running, walking and to 

recognise other day to day activities such as stair walking, sitting 

and driving, the efficacy of these devices to be used in the 

monitoring of a sprint start in a running race has yet to be 

determined. The accuracy of both the timing and acceleration 

profiles recorded by a wireless wearable device, when compared 

to data collected using Vicon motion capture system, are 

described in this paper.  Twenty five sprint start trials were 

recorded and eight features where identified and automatically 

determined via bespoke software algorithms.  Timing and 

acceleration data from these points were then compared between 

the two methods of collection.  The timing accuracy of the inertial 

measurement unit was accurate to 0.025 ± 0.024 s. The variance 

between the acceleration readings was larger ranging from 1.15 – 

2.60 m/s2 with a mean of 1.81 m/22. 

Keywords—Wireless IMU, sprint start, accelerometer,sport, 

sensor. 

I.  INTRODUCTION  

Throughout the lifecycle of the season [1], athletes and 
coaches work on different stages of a race at specific times.  
Whilst the number of stages in the sprinting event is not 
universally agreed upon by coaches ranging from three to six 
[2], in order to prevent over-complicating the process three 
principle phases have been defined: 

1. Start phase – the point at which the athlete is in the set 
position to when both of their feet have left the starting blocks. 

2. Drive / pick-up phase – from the end of the start phase 
until the athlete is standing in the fully upright running 
position. 

3. Maintenance phase – the remainder of the race. 

The first two phases, lasting around 40m of a 100m sprint, 
account for 64% of the final result [3].  Therefore, it is vital 
that coaches work to optimise these phases and monitor the 
progress closely. 

Presently the technologies that allow an athlete’s 
performance to be monitored are limited.  The most accessible 
performance indicator that coaches use are the times their 
athletes record during competition or manual stopwatch 
recorded timings during training.  The times recorded are hard 
to quantify as they do not provide any information as to what 
occurred within the race or training session.  A small minority 
of coaches, and certainly only those at elite level, have the 
scientific resources (e.g. light gates [4]) enabling them to 
monitor performance features during training.  Even with 
access to this type of technology the “complete” performance 
picture of the whole event is not provided and a large amount 
of post processing is required in terms of time, skills and costs.  
Expensive instrumented starting blocks (ISBs) have been 
successfully developed [5] and currently a form of ISB is used 
in the monitoring of false starts at world class events such as 
the IAAF Diamond League and the Olympic Games.  
However, these systems are constrained to feedback 
information on reaction time only.  A cheap and easy to use 
device is therefore required to allow more people to benefit 
from accurate, relevant and detailed performance monitoring.  
During a sprint start an athlete aims to clear his / her starting 
blocks with as much horizontal force as possible in as short a 
period of time.  Their rear foot is only in contact with the 
starting block for 45% of the time taken to complete phase 1, 
thus their forefoot produces the majority of the force [6]. 
Wireless IMUs (inertial measurement units) have been found to 
give good temporal accuracy during walking and running [7].  
An IMU has the capability to collect a large amount of 
information regarding transitional and rotational acceleration.  
The purpose of this study was to investigate the capability of an 
IMU in providing relevant and sufficiently accurate 
information for a sprint start performance and thus being used 
as cheaper an alternative solution to the more expensive ISBs. 

II. METHODOLOGY 

A. Participants 

Five male amateur university athletes were recruited for the 
study (weight = 81 ± 10.6 kg, age = 20.6 ± 0.5 years old).  All 
athletes were recruited from Loughborough University and 
gave their consent to take part.  Throughout the trials the 
athletes wore their own footwear as spikes could not be worn 
within the laboratory setting. 
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B. Equipment 

 

Fourteen infrared Vicon T-Series cameras recorded 35 

retro-reflective markers positioned on the athletes at 250 Hz 

using the Vicon Nexus system.  The position of the markers is 

reported in Table I. Prior to testing the cameras were 

calibrated, so that the origin was known and thus positional 

data could be determined.  The IMU used was a wireless 

device, developed at Loughborough University, consisting of a 

3-axis accelerometer and a 3-axis gyroscope. It was positioned 

on the athlete’s lower back so that the Z axis of the IMU was 

parallel to the frontal plane of the athlete.  Data were collected 

at 50Hz.  Four retro-reflective markers were placed on the 

IMU to allow for its position to be tracked.  Two wooden 

starting blocks, fixed at an angle of 45º from the horizontal, 

were bolted to two independant Kistler force platforms.  The 

force platforms collected data at 1000Hz and were re-set to 

read a zero force before the start of each trial.  Fig.1 shows the 

experimental set up. 

 

C. Protocol 

The athletes where instructed to carry out a warm up as 

they would for a regular training session.  A period of 

familiarisation with the starting blocks was permitted.  Once 

the athlete was ready the reflective markers were placed on 

their skin and the IMU was placed on their lower back.  A 

static trial of each athlete in the “on your marks” position (Fig. 

2.1) was recorded to allow for ease of Vicon post-processing.  

The athlete was then instructed to carry out a sprint start as 

they would in a race.  The commands “on your marks”, “set” 

(Fig. 2.2); and “go” were given.  All recordings started on the 

“on your marks” command.  The force plate and Vicon system 

were synchronised so that they stared recording at the same 

point.  Each participant performed five sprint starts in total.  

Between each trail a period of recovery was allowed. 

 

D. Data Processing 

The Vicon data were reconstructed to determine position in 

three-dimensions.  The static trial for each athlete was then 

manually labelled and this model was used to auto-label the 

remaining trials.  Each trial was manually inspected for gaps 

and / or labelling errors.  Any gaps of less than 50 frames were 

filled using the spline fill method, any gaps greater than 50 

frames were filled with a pattern fill algorithm.  A low pass 5
th
 

order Butterworth filter with a cut off frequency of 14Hz was 

selected as the optimal cut off frequency for the Vicon data.  

This was selected using the residual analysis technique [8]. 

The IMU data were transformed into the global frame 

using the Euler angles transformation approach [9].  A low 

pass 5
th

 order Butterworth filter with a cut off frequency of 

12Hz was selected, again using the residual analysis technique 

[8]. 

The positional Vicon data was twice differentiated to get 

acceleration data.  Only the data in the x-direction (athlete’s 

horizontal movement) was investigated, in the first instance, 

for both the acceleration data from the IMU and the 

acceleration of the IMU itself, determined from the Vicon 

data.  In order to synchronise the data, a moving Pearson’s 

correlation algorithm was developed in Matlab.  This 

algorithm used down sampled data (i.e. 50Hz) from Vicon.  

The Vicon data were correlated with the IMU acceleration 

data using a standard correlation algorithm.  The maximum 

correlation coefficient was determined and the time stamp at 

this point was used to synchronise the two signals. 

A script was written in Matlab 7.5.0 (R2007b) which 

automatically extracted eight key features from both Vicon  

and accelerometer traces following synchronisation. The 

frame number and the acceleration at each of these key 

features were determined and the mean and standard deviation 

calculated. 

TABLE I. POSITION OF MARKERS 
Markers on both left and right side Single marker 

Heel 1st Metatarsal Top Shoulder T10 

Inside ankle Outside ankle Front shoulder T2 

Inside knee Outside knee Back shoulder C7 

Inside elbow Outside elbow Outside wrist Clavicle 

Inside wrist Pelvis Back waist Sternum 
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Fig 2. Sprint characteristics within the Vicon trace. 1. “on your marks”, 2. 
“set’, 3. “go” and 4. end of phase 1. 

 

Fig.1 Experimental set up 

 



III. RESULTS AND DISCUSSION 

A. Correlation 

An example of the key points of the sprint start that can be 

picked out of the Vicon trace are illustrated in Fig. 2 along 

with the images of the athlete’s progression at these points.  

The results of the acceleration data collected by both the IMU 

and Vicon can be observed in Fig. 3.  A Pearson’s test for the 

two traces recorded from 25 trials results in a mean and 

standard deviation for the correlation coefficient of 0.907 ± 

0.068.  This emphasises a positive correlation across all trials, 

suggesting that the IMU accelerometer data have represent the 

same features as the data recorded using the Vicon system. 

B. Timing 

Eight key features were automatically selected from each 

trace using the Matlab script.  These features have been 

highlighted in Fig. 3 and the absolute mean and standard 

deviations between the IMU and Vicon for time and 

acceleration at these points listed in Table II.  The results 

show that feature six is the most variable in terms of timing 

(i.e. 2 ± 3.42 frames) and feature eight (i.e. when the forefoot 

leaves the starting blocks) shows the least variability in time 

with the lowest standard deviation (i.e. 0.44 ± 0.58).  Fig. 4 

shows a graph of these data.  The mean accuracy is 1.26 

frames or 0.025 ± 0.0214 s. 

 

C. Acceleration 

The differences in acceleration recorded by the Vicon and 

IMU recorded results in a mean accuracy of 1.81 m/s
2
 across 

each of the trials.  The largest mean difference (i.e. 2.6 m/s
2
) is 

seen for feature seven (i.e. following the rear foot leaving the 

starting blocks).  Fig. 5 shows the mean difference in 

acceleration for each of the different features. 

 

D. Systematic Error 

From the information illustrated in Fig. 4 and 5 the 

systematic error in the data collected using the IMU was 

investigated further.  The mean of the timing and acceleration 

inaccuracies (1.28 frames and 2.33 m/s
2 
respectively) highlight 

that a systematic error exists.  The mean timing and 

acceleration accuracy for features seven and eight are the 

lowest, indicating that the features are characterised more 

robustly during increased changes in acceleration.  To 

understand the systematic error in more detail a first order 

polynomial curve is fitted to these data (Fig 6), the line created 

has a gradient of 0.987 and intersects the y axis at 0.0113.  

Showing a very small systematic error in the acceleration data 

recorded using the IMU when compared to that recorded using 

Vicon. 

The relative differences between the time and acceleration 

features are reported in Table III, the overall mean of 0.047 ± 

0.035 frames for time and 0.065 ± 0.122 m/s
2
 for acceleration 

illustrate that the accelerometer data is accurate in supplying 

relative information regarding each feature. 

 

IV. CONCLUSION 

The IMU device has shown that the data collected has the 

ability to produce an accurate replication of a sprint start, as 

well as having a high degree of timing accuracy, within 0.06s 

when compared to the gold standard.  This makes it a much 

cheaper alternative to the currently available ISBs.  If the 

relative differences between the identified features are used 

then any inherent systematic error in the IMU can be 

effectively removed.  However the sprint start is a highly 

explosive movement and thus the current sampling rate of the 

IMU device (i.e. 50 Hz) will mean high frequency variations 

will be missed.  In order to be able to detect high frequency 

features a 2
nd

 generation IMU has been designed to be able to 

transmit IMU data at a frequency of 10 kHz.  Positional 

accuracy determined from accelerometers is known to be 

limited by integration errors.  However previous research [10] 

and [11] has shown it possible to correct for integration drift 

by using knowledge about when the IMU is stationary.  The 

positive results suggest that with an increase in sampling rate 

and removal of the systematic errors within the data the IMU 

could be used to assist athletes and coaches in their pursuit to 

optimise performance.   

An extra feature of this specific IMU allows data to be 

supplied to the user in real time, allowing the coach and 

athlete to receive meaningful, useful information that can be 

TABLE II.  MEAN AND STD DIFFERENCES OF TIMING AND ACCELERATION FOR EACH FEATURE. 

 
Feature 1 2 3 4 5 6 7 8 Overall 

Mean Frames difference 1.48 1.4 1.28 1.48 1.36 2 0.8 0.44 1.26 

STD frames difference 1.92 2.13 2.48 4.15 3.01 3.42 0.96 0.58 1.07 

Mean acceleration difference 1.52 1.15 1.78 1.28 1.94 2.13 2.60 2.12 1.81 

STD acceleration difference 2.04 1.18 1.60 1.35 1.62 2.02 3.09 1.74 1.47 

 

TABLE III MEAN DIFFERENCE BETWEEN TRIALS. 
Feature 1 2 3 4 5 6 7 8 Overall STD 

Mean difference in time 0.083 0.042 0.042 0.083 0 0.083 0.042 0 0.047 0.065 

Mean difference in acceleration 0.03 -0.038 0.022 0.071 0.079 0.109 -0.079 0.33 0.035 0.122 

 



implemented into their performance with more effect than if it 

was given during a review session [12], which is a limiting 

factor in the majority of the currently used performance 

monitoring techniques. 

 

Further work will include introducing a trigger into the system 

in order to allow coaches to determine reaction time, 

determination of the relevant features that enable the 

characterisation of the later phases of the sprint event and 

increasing the sampling frequency to reduce the current timing 

accuracy of approximately 0.025s 
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Fig. 3.  Features automatically selected from each trial.

Fig. 5.  Mean acceleration difference between IMU and Vicon features.

Fig. 4.  Mean timing difference between IMU and Vicon features.

Fig. 6.  Comparison of Vison vs IMU acceleration.


