7 research outputs found

    Subwavelength grating metamaterial waveguides and ring resonators on a silicon nitride platform

    Full text link
    We propose and demonstrate subwavelength grating (SWG) metamaterial waveguides and ring resonators on a silicon nitride platform for the first time. The SWG waveguide is engineered such that a large overlap of 53% of the Bloch mode with the top cladding material is achieved, demonstrating excellent potential for applications in evanescent field sensing and light amplification. The devices, which have critical dimensions greater than 100 nm, are fabricated using a commercial rapid turn-around silicon nitride prototyping foundry process using electron beam lithography. Experimental characterization of the fabricated device reveals excellent ring resonator internal quality factor (2.11x10^5) and low propagation loss (~1.5 dB/cm) in the C-band, a significant improvement of both parameters compared to silicon based SWG ring resonators. These results demonstrate the promising prospects of SWG metamaterial structures for silicon nitride based photonic integrated circuits.Comment: 12 pages, 7 figures, submitted to Laser & Photonics Reviews for publicatio

    A full degree-of-freedom photonic crystal spatial light modulator

    Get PDF
    Harnessing the full complexity of optical fields requires complete control of all degrees-of-freedom within a region of space and time -- an open goal for present-day spatial light modulators (SLMs), active metasurfaces, and optical phased arrays. Here, we solve this challenge with a programmable photonic crystal cavity array enabled by four key advances: (i) near-unity vertical coupling to high-finesse microcavities through inverse design, (ii) scalable fabrication by optimized, 300 mm full-wafer processing, (iii) picometer-precision resonance alignment using automated, closed-loop "holographic trimming", and (iv) out-of-plane cavity control via a high-speed micro-LED array. Combining each, we demonstrate near-complete spatiotemporal control of a 64-resonator, two-dimensional SLM with nanosecond- and femtojoule-order switching. Simultaneously operating wavelength-scale modes near the space- and time-bandwidth limits, this work opens a new regime of programmability at the fundamental limits of multimode optical control.Comment: 25 pages, 20 figure

    A full degree-of-freedom spatiotemporal light modulator

    Get PDF
    Harnessing the full complexity of optical fields requires complete control of all degrees-of-freedom within a region of space and time — an open goal for present-day spatial light modulators (SLMs), active metasurfaces, and optical phased arrays. Here, we solve this challenge with a programmable photonic crystal cavity array enabled by four key advances: (i) near-unity vertical coupling to high-finesse microcavities through inverse design, (ii) scalable fabrication by optimized, 300 mm full-wafer processing, (iii) picometer-precision resonance alignment using automated, closed-loop “holographic trimming”, and (iv) out-of-plane cavity control via a high-speed µLED array. Combining each, we demonstrate near-complete spatiotemporal control of a 64-resonator, two-dimensional SLM with nanosecond- and femtojoule-order switching. Simultaneously operating wavelength-scale modes near the space- and time-bandwidth limits, this work opens a new regime of programmability at the fundamental limits of multimode optical control

    Single laser modulated drive and detection of a nano-optomechanical cantilever

    No full text
    To reduce the complexity in a nano-optomechanical system a pump and probe scheme using only a single input laser is used to both coherently pump and probe the nanomechanical device. The system operates similarly to the traditional two laser system, but instead of using a constant power to probe the device and a separate, modulated laser to drive it with an optical gradient force, a single laser is utilized for both functions. A model of the measurement scheme\u2019s response is developed which matches the experimental data obtained in the optomechanical Doppler regime and low cavity power limit. As such, the unconventional response still yields useful device information such as the resonant frequency of the device and its mechanical quality factor. The device is driven with low noise and its frequency is tracked using a phase-locked loop. This demonstrates its potential use for dynamic frequency measurements such as nanomechanical inertial mass loading. In such a system, the estimated mass resolution of the device is 6 zg and consistent with other detection methods.Peer reviewed: YesNRC publication: Ye
    corecore