713 research outputs found
100 Jahre Fritz-Schumacher-Siedlung in Hamburg
Die unmittelbar nach dem Ersten Weltkrieg am nördlichen Stadtrand von Hamburg gebaute Fritz-Schumacher-Siedlung ist bis heute beispielhaft in ihrer Konzeption. Sie war beeinflusst von der Gartenstadt-Bewegung, auch wenn sie nicht all deren Kriterien erfüllte. Die nach ihrem Architekten benannte Siedlung sollte Arbeitern, Handwerkern und Kriegsinvaliden ein gesundes, selbstbestimmtes Leben im Grünen in einer engen sozialen und kulturellen Gemeinschaft erlauben. Ein Handicap waren von Anfang die beim Bau auferlegten Sparvorgaben. Die vorliegende Arbeit beschreibt die Entwicklung der Anlage in den zurückliegenden 100 Jahren mit ihren Vorzügen und Problemen.Not Reviewe
The Insula and Its Epilepsies
Insular seizures are great mimickers of seizures originating elsewhere in the brain. The insula is a highly connected brain structure. Seizures may only become clinically evident after ictal activity propagates out of the insula with semiology that reflects the propagation pattern. Insular seizures with perisylvian spread, for example, manifest first as throat constriction, followed next by perioral and hemisensory symptoms, and then by unilateral motor symptoms. On the other hand, insular seizures may spread instead to the temporal and frontal lobes and present like seizures originating from these regions. Due to the location of the insula deep in the brain, interictal and ictal scalp electroencephalogram (EEG) changes can be variable and misleading. Magnetic reso- nance imaging, magnetic resonance spectroscopy, magnetoencephalography, positron emission tomography, and single-photon computed tomography imaging may assist in establishing a diagnosis of insular epilepsy. Intracranial EEG recordings from within the insula, using stereo-EEG or depth electrode techniques, can prove insular seizure origin. Seizure onset, most commonly seen as low-voltage, fast gamma activity, however, can be highly localized and easily missed if the insula is only sparsely sampled. Moreover, seizure spread to the contralateral insula and other brain regions may occur rapidly. Extensive sampling of the insula with multiple electrode trajectories is necessary to avoid these pitfalls. Understanding the functional organization of the insula is helpful when interpreting the semiology produced by insular seizures. Electrical stimulation mapping around the central sulcus of the insula results in paresthesias, while stimulation of the posterior insula typically produces painful sensations. Visceral sensations are the next most common result of insular stimulation. Treatment of insular epilepsy is evolving, but poses challenges. Surgical resections of the insula are effective but risk significant morbidity if not carefully planned. Neurostimulation is an emerging option for treatment, especially for seizures with onset in the posterior insula. The close association of the insula with marked autonomic changes has led to interest in the role of the insula in sudden unexpected death in epilepsy and warrants additional study with larger patient cohorts
Oscillation Phase Locking and Late ERP Components of Intracranial Hippocampal Recordings Correlate to Patient Performance in a Working Memory Task
In working memory tasks, stimulus presentation induces a resetting of intracranial temporal lobe oscillations in multiple frequency bands. To further understand the functional relevance of this phenomenon, we investigated whether working memory performance depends on the phase precision of ongoing oscillations in the hippocampus. We recorded intra-hippocampal local field potentials in individuals performing a working memory task. Two types of trials were administered. For high memory trials presentation of a list of four letters ( List ) was followed by a single letter memory probe ( Test ). Low memory load trials, consisting of four identical letters (AAAA) followed by a probe with the same letter (A), were interspersed. Significant phase locking of ongoing oscillations across trials, estimated by the Pairwise Phase Consistency Index (PPCI) was observed in delta (0.5-4 Hz), theta (5-7 Hz), and alpha (8-12 Hz) bands during stimulus presentation and recall but was increased in low memory load trials. Across patients however, higher delta PPCIs during recall in the left hippocampus were associated with faster reaction times. Because phase locking could also be interpreted as a consequence of a stimulus evoked potential, we performed event related potential analysis (ERP) and examined the relationship of ERP components with performance. We found that both amplitude and latency of late ERP components correlated with both reaction time and accuracy. We propose that, in the Sternberg task, phase locking of oscillations, or alternatively its ERP correlate, synchronizes networks within the hippocampus and connected structures that are involved in working memory
Correlation Structures of Correlated Binomial Models and Implied Default Distribution
We show how to analyze and interpret the correlation structures, the
conditional expectation values and correlation coefficients of exchangeable
Bernoulli random variables. We study implied default distributions for the
iTraxx-CJ tranches and some popular probabilistic models, including the
Gaussian copula model, Beta binomial distribution model and long-range Ising
model. We interpret the differences in their profiles in terms of the
correlation structures. The implied default distribution has singular
correlation structures, reflecting the credit market implications. We point out
two possible origins of the singular behavior.Comment: 16 pages, 7 figure
Stacking domains in graphene on silicon carbide: a pathway for intercalation
Graphene on silicon carbide (SiC) bears great potential for future graphene
electronic applications because it is available on the wafer-scale and its
properties can be custom-tailored by inserting various atoms into the
graphene/SiC interface. It remains unclear, however, how atoms can cross the
impermeable graphene layer during this widely used intercalation process. Here
we demonstrate that, in contrast to the current consensus, graphene layers on
SiC are not homogeneous, but instead composed of domains of different
crystallographic stacking. We show that these domains are intrinsically formed
during growth and that dislocations between domains dominate the
(de)intercalation dynamics. Tailoring these dislocation networks, e.g. through
substrate engineering, will increase the control over the intercalation process
and could open a playground for topological and correlated electron phenomena
in two-dimensional superstructures
Production of α1,3-galactosyltransferase-deficient pigs
The enzyme α1,3-galactosyltransferase (α1,3GT or GGTA1) synthesizes α1,3galactose (α1,3Gal) epitopes (Galα1,3Galβ1,4GlcNAc-R), which are the major xenoantigens causing hyperacute rejection in pig-to-human xenotransplantation. Complete removal of α1,3Gal from pig organs is the critical step toward the success of xenotransplantation. We reported earlier the targeted disruption of one allele of the α1,3GT gene in cloned pigs. A selection procedure based on a bacteria[toxin was used to select for cells in which the second allele of the gene was knocked out. Sequencing analysis demonstrated that knockout of the second allele of the α1,3GT gene was caused by a T-to-G single point mutation at the second base of exon 9, which resulted in inactivation of the α1,3GT protein. Four healthy α1,3GT double-knockout female piglets were produced by three consecutive rounds of cloning. The piglets carrying a point mutation in the α1,3GT gene hold significant value, as they would allow production of α1,3Gal-deficient pigs free of antibiotic-resistance genes and thus have the potential to make a safer product for human use
Toxic Epidermal Necrolysis after Pemetrexed and Cisplatin for Non-Small Cell Lung Cancer in a Patient with Sharp Syndrome
Background: Pemetrexed is an antifolate drug approved for maintenance and second-line therapy, and, in combination with cisplatin, for first-line treatment of advanced nonsquamous non-small cell lung cancer. The side-effect profile includes fatigue, hematological and gastrointestinal toxicity, an increase in hepatic enzymes, sensory neuropathy, and pulmonary and cutaneous toxicity in various degrees. Case Report: We present the case of a 58-year-old woman with history of Sharp's syndrome and adenocarcinoma of the lung, who developed toxic epidermal necrolysis after the first cycle of pemetrexed, including erythema, bullae, extensive skin denudation, subsequent systemic inflammation and severe deterioration in general condition. The generalized skin lesions occurred primarily in the previous radiation field and responded to immunosuppressive treatment with prednisone. Conclusion: Although skin toxicity is a well-known side effect of pemetrexed, severe skin reactions after pemetrexed administration are rare. Caution should be applied in cases in which pemetrexed is given subsequent to radiation therapy, especially in patients with pre-existing skin diseases
Electrical Stimulation Modulates High γ Activity and Human Memory Performance.
Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62-118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with poor memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation
Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package
We introduce the \texttt{pyunicorn} (Pythonic unified complex network and
recurrence analysis toolbox) open source software package for applying and
combining modern methods of data analysis and modeling from complex network
theory and nonlinear time series analysis. \texttt{pyunicorn} is a fully
object-oriented and easily parallelizable package written in the language
Python. It allows for the construction of functional networks such as climate
networks in climatology or functional brain networks in neuroscience
representing the structure of statistical interrelationships in large data sets
of time series and, subsequently, investigating this structure using advanced
methods of complex network theory such as measures and models for spatial
networks, networks of interacting networks, node-weighted statistics or network
surrogates. Additionally, \texttt{pyunicorn} provides insights into the
nonlinear dynamics of complex systems as recorded in uni- and multivariate time
series from a non-traditional perspective by means of recurrence quantification
analysis (RQA), recurrence networks, visibility graphs and construction of
surrogate time series. The range of possible applications of the library is
outlined, drawing on several examples mainly from the field of climatology.Comment: 28 pages, 17 figure
Recommended from our members
Human Verbal Memory Encoding Is Hierarchically Distributed in a Continuous Processing Stream.
Processing of memory is supported by coordinated activity in a network of sensory, association, and motor brain regions. It remains a major challenge to determine where memory is encoded for later retrieval. Here, we used direct intracranial brain recordings from epilepsy patients performing free recall tasks to determine the temporal pattern and anatomical distribution of verbal memory encoding across the entire human cortex. High γ frequency activity (65-115 Hz) showed consistent power responses during encoding of subsequently recalled and forgotten words on a subset of electrodes localized in 16 distinct cortical areas activated in the tasks. More of the high γ power during word encoding, and less power before and after the word presentation, was characteristic of successful recall and observed across multiple brain regions. Latencies of the induced power changes and this subsequent memory effect (SME) between the recalled and forgotten words followed an anatomical sequence from visual to prefrontal cortical areas. Finally, the magnitude of the memory effect was unexpectedly found to be the largest in selected brain regions both at the top and at the bottom of the processing stream. These included the language processing areas of the prefrontal cortex and the early visual areas at the junction of the occipital and temporal lobes. Our results provide evidence for distributed encoding of verbal memory organized along a hierarchical posterior-to-anterior processing stream
- …