1,787 research outputs found

    Environmental concentrations of anti-androgenic pharmaceuticals do not impact sexual disruption in fish alone or in combination with steroid oestrogens

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Sexual disruption in wild fish has been linked to the contamination of river systems with steroid oestrogens, including the pharmaceutical 17α-ethinylestradiol, originating from domestic wastewaters. As analytical chemistry has advanced, more compounds derived from the human usage of pharmaceuticals have been identified in the environment and questions have arisen as to whether these additional pharmaceuticals may also impact sexual disruption in fish. Indeed, pharmaceutical anti-androgens have been shown to induce such effects under laboratory conditions. These are of particular interest since anti-androgenic biological activity has been identified in the aquatic environment and is potentially implicated in sexual disruption alone and in combination with steroid oestrogens. Consequently, predictive modelling was employed to determine the concentrations of two anti-androgenic human pharmaceuticals, bicalutamide and cyproterone acetate, in UK sewage effluents and river catchments and their combined impacts on sexual disruption were then assessed in two fish models. Crucially, fish were also exposed to the anti-androgens in combination with steroid oestrogens to determine whether they had any additional impact on oestrogen induced feminisation. Modelling predicted that the anti-androgenic pharmaceuticals were likely to be widespread in UK river catchments. However, their concentrations were not sufficient to induce significant responses in plasma vitellogenin concentrations, secondary sexual characteristics or gross indices in male fathead minnow or intersex in Japanese medaka alone or in combination with steroid oestrogens. However, environmentally relevant mixtures of oestrone, 17β-oestradiol and 17α-ethinylestradiol did induce vitellogenin and intersex, supporting their role in sexual disruption in wild fish populations. Unexpectedly, a male dominated sex ratio (100% in controls) was induced in medaka and the potential cause and implications are briefly discussed, highlighting the potential of non-chemical modes of action on this endpoint

    Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment

    Get PDF
    A rapidly increasing number of chemicals, or their degradation products, are being recognized as possessing estrogenic activity, albeit usually weak. We have found that effluent from sewage treatment works contains a chemical, or mixture of chemicals, that induces vitellogenin synthesis in male fish maintained in the effluent, thus indicating that the effluent is estrogenic. The effect was extremely pronounced and occurred at all sewage treatment works tested. The nature of the chemical or chemicals causing the effect is presently not known. However, we have tested a number of chemicals known to be estrogenic to mammals and have shown that they are also estrogenic to fish; that is, no species specificity was apparent. Many of these weakly estrogenic chemicals are known to be present in effluents. Further, a mixture of different estrogenic chemicals was considerably more potent than each of the chemicals when tested individually, suggesting that enhanced effects could occur when fish are exposed simultaneously to various estrogenic chemicals (as is likely to occur in rivers receiving effluent). Subsequent work should determine whether exposure to these chemicals at the concentrations present in the environment leads to any deleterious physiological effects

    Assessing the Sensitivity of Different Life Stages for Sexual Disruption in Roach (Rutilus rutilus) Exposed to Effluents from Wastewater Treatment Works

    Get PDF
    Surveys of U.K. rivers have shown a high incidence of sexual disruption in populations of wild roach (Rutilus rutilus) living downstream from wastewater treatment works (WwTW), and the degree of intersex (gonads containing both male and female structural characteristics) has been correlated with the concentration of effluent in those rivers. In this study, we investigated feminized responses to two estrogenic WwTWs in roach exposed for periods during life stages of germ cell division (early life and the postspawning period). Roach were exposed as embryos from fertilization up to 300 days posthatch (dph; to include the period of gonadal sex differentiation) or as postspawning adult males, and including fish that had received previous estrogen exposure, for either 60 or 120 days when the annual event of germ cell proliferation occurs. Both effluents induced vitellogenin synthesis in both life stages studied, and the magnitude of the vitellogenic responses paralleled the effluent content of steroid estrogens. Feminization of the reproductive ducts occurred in male fish in a concentration-dependent manner when the exposure occurred during early life, but we found no effects on the reproductive ducts in adult males. Depuration studies (maintenance of fish in clean water after exposure to WwTW effluent) confirmed that the feminization of the reproductive duct was permanent. We found no evidence of ovotestis development in fish that had no previous estrogen exposure for any of the treatments. In wild adult roach that had previously received exposure to estrogen and were intersex, the degree of intersex increased during the study period, but this was not related to the immediate effluent exposure, suggesting a previously determined programming of ovotestis formation

    Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.This study assessed whether exposure of male rats to two estrogenic, environmental chemicals, 4-octylphenol (OP) and butyl benzyl phthalate (BBP) during gestation or during the first 21 days of postnatal life, affected testicular size or spermatogenesis in adulthood (90-95 days of age). Chemicals were administered via the drinking water or concentrations of 10-1000 micrograms/l (OP) or 1000 micrograms/l (BBP), diethylstilbestrol (DES; 100 micrograms/l) and an octylphenol polyethoxylate (OPP; 1000 micrograms/l), which is a weak estrogen or nonestrogenic in vitro, were administered as presumptive positive and negative controls, respectively. Controls received the vehicle (ethanol) in tap water. In study 1, rats were treated from days 1-22 after births in studies 2 and 3, the mothers were treated for approximately 8-9 weeks, spanning a 2-week period before mating throughout gestation and 22 days after giving birth. With the exception of DES, treatment generally had no major adverse effect or body weight: in most instances, treated animals were heavier than controls at day 22 and at days 90-95. Exposure to OP, OPP, or BBP at a concentration of 1000 micrograms/1 resulted in a small (5-13%) but significant (p < 0.01 or p < 0.0001) reduction in mean testicular size in studies 2 and 3, an effect that was still evident when testicular weight was expressed relative to body, weight or kidney weight. The effect of OPP is attributed to its metabolism in vivo to OP. DES exposure caused similar reductions in testicular size but also caused reductions in body weight, kidney weight, and litter size. Ventral prostate weight was reduced significantly in DES-treated rats and to minor extent in OP-treated rats. Comparable but more minor effects of treatment with DES or OP on testicular size were observed in study 1. None of the treatments had any adverse effect on testicular morphology or on the cross-sectional area of the lumen or seminiferous epithelium at stages VII-VIII of the spermatogenic cycle, but DES, OP, and BBP caused reductions of 10-21% (p < 0.05 to p < 0.001) in daily sperm production. Humans are exposed to phthalates, such as BBP, and to alkylphenol polyethoxylates, such as OP, but to what extent is unknown. More detailed studies are warranted to assess the possible risk to the development of the human testis from exposure to these and other environmental estrogens

    Automated Global Feature Analyzer - A Driver for Tier-Scalable Reconnaissance

    Get PDF
    For the purposes of space flight, reconnaissance field geologists have trained to become astronauts. However, the initial forays to Mars and other planetary bodies have been done by purely robotic craft. Therefore, training and equipping a robotic craft with the sensory and cognitive capabilities of a field geologist to form a science craft is a necessary prerequisite. Numerous steps are necessary in order for a science craft to be able to map, analyze, and characterize a geologic field site, as well as effectively formulate working hypotheses. We report on the continued development of the integrated software system AGFA: automated global feature analyzerreg, originated by Fink at Caltech and his collaborators in 2001. AGFA is an automatic and feature-driven target characterization system that operates in an imaged operational area, such as a geologic field site on a remote planetary surface. AGFA performs automated target identification and detection through segmentation, providing for feature extraction, classification, and prioritization within mapped or imaged operational areas at different length scales and resolutions, depending on the vantage point (e.g., spaceborne, airborne, or ground). AGFA extracts features such as target size, color, albedo, vesicularity, and angularity. Based on the extracted features, AGFA summarizes the mapped operational area numerically and flags targets of "interest", i.e., targets that exhibit sufficient anomaly within the feature space. AGFA enables automated science analysis aboard robotic spacecraft, and, embedded in tier-scalable reconnaissance mission architectures, is a driver of future intelligent and autonomous robotic planetary exploration

    Health effects in fish of long-term exposure to effluents from wastewater treatment works

    Get PDF
    The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the use of bioassays for determining the estrogenic potency of WwTW effluents, and they highlight the associated problems for modeling approaches that are reliant on measured concentrations of estrogenic chemicals

    Removal of ecotoxicity of 17α-ethinylestradiol using TAML/peroxide water treatment

    Get PDF
    17α -ethinylestradiol (EE2), a synthetic oestrogen in oral contraceptives, is one of many pharmaceuticals found in inland waterways worldwide as a result of human consumption and excretion into wastewater treatment systems. At low parts per trillion (ppt), EE2 induces feminisation of male fish, diminishing reproductive success and causing fish population collapse. Intended water quality standards for EE2 set a much needed global precedent. Ozone and activated carbon provide effective wastewater treatments, but their energy intensities and capital/operating costs are formidable barriers to adoption. Here we describe the technical and environmental performance of a fast- developing contender for mitigation of EE2 contamination of wastewater based upon smallmolecule, full-functional peroxidase enzyme replicas called “TAML activators”. From neutral to basic pH, TAML activators with H2O2 efficiently degrade EE2 in pure lab water, municipal effluents and EE2-spiked synthetic urine. TAML/H2O2 treatment curtails estrogenicity in vitro and substantially diminishes fish feminization in vivo. Our results provide a starting point for a future process in which tens of thousands of tonnes of wastewater could be treated per kilogram of catalyst. We suggest TAML/H2O2 is a worthy candidate for exploration as an environmentally compatible, versatile, method for removing EE2 and other pharmaceuticals from municipal wastewaters.Heinz Endowments, the Swiss National Science Foundation, the Steinbrenner Institute for a Steinbrenner Doctoral Fellowship. NMR instrumentation at CMU was partially supported by NSF (CHE-0130903 and CHE-1039870)

    Resting vs. active: a meta-analysis of the intra- and inter-specific associations between minimum, sustained, and maximum metabolic rates in vertebrates

    Get PDF
    Variation in aerobic capacity has far reaching consequences for the physiology, ecology, and evolution of vertebrates. Whether at rest or active, animals are constrained to operate within the energetic bounds determined by their minimum (minMR) and sustained or maximum metabolic rates (upperMR). MinMR and upperMR can differ considerably among individuals and species but are often presumed to be mechanistically linked to one another. Specifically, minMR is thought to reflect the idling cost of the machinery needed to support upperMR. However, previous analyses based on limited datasets have come to conflicting conclusions regarding the generality and strength of their association. Here we conduct the first comprehensive assessment of their relationship, based on a large number of published estimates of both the intra-specific (n = 176) and inter-specific (n = 41) phenotypic correlations between minMR and upperMR, estimated as either exercise-induced maximum metabolic rate (VO2max), cold-induced summit metabolic rate (Msum), or daily energy expenditure (DEE). Our meta-analysis shows that there is a general positive association between minMR and upperMR that is shared among vertebrate taxonomic classes. However, there was stronger evidence for intra-specific correlations between minMR and Msum and between minMR and DEE than there was for a correlation between minMR and VO2max across different taxa. As expected, inter-specific correlation estimates were consistently higher than intra-specific estimates across all traits and vertebrate classes. An interesting exception to this general trend was observed in mammals, which contrast with birds and exhibit no correlation between minMR and Msum. We speculate that this is due to the evolution and recruitment of brown fat as a thermogenic tissue, which illustrates how some species and lineages might circumvent this seemingly general association. We conclude that, in spite of some variability across taxa and traits, the contention that minMR and upperMR are positively correlated generally holds true both within and across vertebrate species. Ecological and comparative studies should therefore take into consideration the possibility that variation in any one of these traits might partly reflect correlated responses to selection on other metabolic parameters
    corecore