10 research outputs found

    Meta-heuristic improvements applied for steel sheet incremental cold shaping

    Get PDF
    In previous studies, a wrapper feature selection method for decision support in steel sheet incremental cold shaping process (SSICS) was proposed. The problem included both regression and classification, while the learned models were neural networks and support vector machines, respectively. SSICS is the type of problem for which the number of features is similar to the number of instances in the data set, this represents many of real world decision support problems found in the industry. This study focuses on several questions and improvements that were left open, suggesting proposals for each of them. More specifically, this study evaluates the relevance of the different cross validation methods in the learned models, but also proposes several improvements such as allowing the number of chosen features as well as some of the parameters of the neural networks to evolve, accordingly. Well-known data sets have been use in this experimentation and an in-depth analysis of the experiment results is included. 5 × 2 CV has been found the more interesting cross validation method for this kind of problems. In addition, the adaptation of the number of features and, consequently, the model parameters really improves the performance of the approach. The different enhancements have been applied to the real world problem, an several conclusions have been drawn from the results obtained

    Meta-heuristic improvements applied for steel sheet incremental cold shaping

    Get PDF
    In previous studies, a wrapper feature selection method for decision support in steel sheet incremental cold shaping process (SSICS) was proposed. The problem included both regression and classification, while the learned models were neural networks and support vector machines, respectively. SSICS is the type of problem for which the number of features is similar to the number of instances in the data set, this represents many of real world decision support problems found in the industry. This study focuses on several questions and improvements that were left open, suggesting proposals for each of them. More specifically, this study evaluates the relevance of the different cross validation methods in the learned models, but also proposes several improvements such as allowing the number of chosen features as well as some of the parameters of the neural networks to evolve, accordingly. Well-known data sets have been use in this experimentation and an in-depth analysis of the experiment results is included. 5 × 2 CV has been found the more interesting cross validation method for this kind of problems. In addition, the adaptation of the number of features and, consequently, the model parameters really improves the performance of the approach. The different enhancements have been applied to the real world problem, an several conclusions have been drawn from the results obtained

    Assessment of two complementary influenza surveillance systems : Sentinel primary care influenza-like illness versus severe hospitalized laboratory-confirmed influenza using the moving epidemic method

    Get PDF
    Monitoring seasonal influenza epidemics is the corner stone to epidemiological surveillance of acute respiratory virus infections worldwide. This work aims to compare two sentinel surveillance systems within the Daily Acute Respiratory Infection Information System of Catalonia (PIDIRAC), the primary care ILI and Influenza confirmed samples from primary care (PIDIRAC-ILI and PIDIRAC-FLU) and the severe hospitalized laboratory confirmed influenza system (SHLCI), in regard to how they behave in the forecasting of epidemic onset and severity allowing for healthcare preparedness. Epidemiological study carried out during seven influenza seasons (2010-2017) in Catalonia, with data from influenza sentinel surveillance of primary care physicians reporting ILI along with laboratory confirmation of influenza from systematic sampling of ILI cases and 12 hospitals that provided data on severe hospitalized cases with laboratory-confirmed influenza (SHLCI-FLU). Epidemic thresholds for ILI and SHLCI-FLU (overall) as well as influenza A (SHLCI-FLUA) and influenza B (SHLCI-FLUB) incidence rates were assessed by the Moving Epidemics Method. Epidemic thresholds for primary care sentinel surveillance influenza-like illness (PIDIRAC-ILI) incidence rates ranged from 83.65 to 503.92 per 100.000 h. Paired incidence rate curves for SHLCI-FLU/PIDIRAC-ILI and SHLCI-FLUA/PIDIRAC-FLUA showed best correlation index' (0.805 and 0.724 respectively). Assessing delay in reaching epidemic level, PIDIRAC-ILI source forecasts an average of 1.6 weeks before the rest of sources paired. Differences are higher when SHLCI cases are paired to PIDIRAC-ILI and PIDIRAC-FLUB although statistical significance was observed only for SHLCI-FLU/PIDIRAC-ILI (p-value Wilcoxon test = 0.039). The combined ILI and confirmed influenza from primary care along with the severe hospitalized laboratory confirmed influenza data from PIDIRAC sentinel surveillance system provides timely and accurate syndromic and virological surveillance of influenza from the community level to hospitalization of severe cases

    Three-Dimensional Manufactured Supports for Breast Cancer Stem Cell Population Characterization

    No full text
    corecore