332 research outputs found

    Solid like friction of a polymer chain

    Full text link
    We propose a simple friction model for isolated polymer chains on a solid substrate. The chains are pulled at constant velocity by one end, the other end can be trapped on the solid substrate on localised sites. We focus on the energy dissipation due to the traps. This simple model leads to non trivial friction laws, depending on the velocity and the distance between traps. Some refinements of the model such as the effect of thermal fluctuation are also reported.Comment: 16 pages, 4 eps figures, accepted for publuication in Eur. Phys. J. E New version of 20/07/2000 minor modifications to figure

    Compression of finite size polymer brushes

    Full text link
    We consider edge effects in grafted polymer layers under compression. For a semi-infinite brush, the penetration depth of edge effects ξh0(h0/h)1/2\xi\propto h_0(h_0/h)^{1/2} is larger than the natural height h0h_0 and the actual height hh. For a brush of finite lateral size SS (width of a stripe or radius of a disk), the lateral extension uSu_S of the border chains follows the scaling law uS=ξϕ(S/ξ)u_S = \xi \phi (S/\xi). The scaling function ϕ(x)\phi (x) is estimated within the framework of a local Flory theory for stripe-shaped grafting surfaces. For small xx, ϕ(x)\phi (x) decays as a power law in agreement with simple arguments. The effective line tension and the variation with compression height of the force applied on the brush are also calculated.Comment: 6 pages, 7 figures, submitted to PCC

    Stretching necklaces

    Full text link
    Polyelectrolytes in poor solvents show a necklace structure where collapsed polymer pearls are linked to stretched strings. In the present paper the elasticity of such chains is studied in detail. Different deformation regimes are addressed. The first is the continuous regime, where many pearls are present. A continuous force extension relation ship is calculated. The main contribution comes from the tension balance and the electrostatic repulsion of consecutive pearls. The main correction term stems from the finite size of the pearls, which monitors their surface energy. For a finite amount of pearls discontinuous stretching is predicted. Finally counterion effects are discussed qualitatively.Comment: to appear in European Phys. Journal E (soft matter

    A database for the industrial trawl fishery of Cote d'Ivoire

    Get PDF
    Fishery statistics for the industrial trawl fishery of Cote d'Ivoire have been well documented since 1968. However, data processing has changed significantly with time and some of the data files have been lost. In 1997, the Centre de Recherches Oceanologiques d'Abidjan decided to retrieve and process all trawl data available from different sources. This paper gives an overview of the database covering the period 1968 to 1997 and describes its coverage, format, structure and use. The database was developed using MS ACCESS and is a powerful tool for storing information about this fishery, and for analysis of its dynamics over a period of 30 years

    Surface-mediated attraction between colloids

    Full text link
    We investigate the equilibrium properties of a colloidal solution in contact with a soft interface. As a result of symmetry breaking, surface effects are generally prevailing in confined colloidal systems. In this Letter, particular emphasis is given to surface fluctuations and their consequences on the local (re)organization of the suspension. It is shown that particles experience a significant effective interaction in the vicinity of the interface. This potential of mean force is always attractive, with range controlled by the surface correlation length. We suggest that, under some circumstances, surface-induced attraction may have a strong influence on the local particle distribution

    Dissipation in Dynamics of a Moving Contact Line

    Full text link
    The dynamics of the deformations of a moving contact line is studied assuming two different dissipation mechanisms. It is shown that the characteristic relaxation time for a deformation of wavelength 2π/k2\pi/|k| of a contact line moving with velocity vv is given as τ1(k)=c(v)k\tau^{-1}(k)=c(v) |k|. The velocity dependence of c(v)c(v) is shown to drastically depend on the dissipation mechanism: we find c(v)=c(v=0)2vc(v)=c(v=0)-2 v for the case when the dynamics is governed by microscopic jumps of single molecules at the tip (Blake mechanism), and c(v)c(v=0)4vc(v)\simeq c(v=0)-4 v when viscous hydrodynamic losses inside the moving liquid wedge dominate (de Gennes mechanism). We thus suggest that the debated dominant dissipation mechanism can be experimentally determined using relaxation measurements similar to the Ondarcuhu-Veyssie experiment [T. Ondarcuhu and M. Veyssie, Nature {\bf 352}, 418 (1991)].Comment: REVTEX 8 pages, 9 PS figure

    Generic phase diagram of active polar films

    Full text link
    We study theoretically the phase diagram of compressible active polar gels such as the actin network of eukaryotic cells. Using generalized hydrodynamics equations, we perform a linear stability analysis of the uniform states in the case of an infinite bidimensional active gel to obtain the dynamic phase diagram of active polar films. We predict in particular modulated flowing phases, and a macroscopic phase separation at high activity. This qualitatively accounts for experimental observations of various active systems, such as acto-myosin gels, microtubules and kinesins in vitro solutions, or swimming bacterial colonies.Comment: 4 pages, 1 figur

    Fluctuations of a driven membrane in an electrolyte

    Full text link
    We develop a model for a driven cell- or artificial membrane in an electrolyte. The system is kept far from equilibrium by the application of a DC electric field or by concentration gradients, which causes ions to flow through specific ion-conducting units (representing pumps, channels or natural pores). We consider the case of planar geometry and Debye-H\"{u}ckel regime, and obtain the membrane equation of motion within Stokes hydrodynamics. At steady state, the applied field causes an accumulation of charges close to the membrane, which, similarly to the equilibrium case, can be described with renormalized membrane tension and bending modulus. However, as opposed to the equilibrium situation, we find new terms in the membrane equation of motion, which arise specifically in the out-of-equilibrium case. We show that these terms lead in certain conditions to instabilities.Comment: 7 pages, 2 figures. submitted to Europhys. Let

    Width distribution of contact lines on a disordered substrate

    Full text link
    We have studied the roughness of a contact line of a liquid meniscus on a disordered substrate by measuring its width distribution. The comparison between the measured width distribution and the width distribution calculated in previous works, extended here to the case of open boundary conditions, confirms that the Joanny-de Gennes model is not sufficient to describe the dynamics of contact lines at the depinning threshold. This conclusion is in agreement with recent measurements which determine the roughness exponent by extrapolation to large system sizes.Comment: 4 pages, 3 figure
    corecore