10 research outputs found

    Conceptual design of the AGATA 1Ď€\pi array at GANIL

    No full text
    International audienceThe Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam gamma-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy gamma rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA l pi array are presente

    ESS emittance measurements at INFN Catania

    No full text
    Beam characteristics at low energy are an absolute necessity for an acceptable injection in the next stage of a linear accelerator, and are also necessary to reduce beam loss and radiation inside the machine. CEA is taking part of ESS linac construction, by designing Emittance Measurement Units (EMU) for the Low Energy Beam Transport (LEBT). The EMU are designed to qualify the proton beam produced by the INFN Catania ion source. The design corresponds to an Allison scanner, using entrance and exit slits, electrostatic plates and a faraday cup. The beam-stopper protects the device and can be removable to fit to beam power. It has been manufactured by the CEA/LITEN with copper tungsten HIP technique. This article report the first measurements on the ESS injector in CATANIA in one dimension

    Micromegas for beam loss monitoring

    No full text
    International audienceThe early detection of beam losses and the alarm to the machine protection system in accelerators are crucial for the safe operation of the machine. In the low energy region of the hadron accelerators, only neutrons and photons are produced in the case of a beam loss. However, photons are also emitted by electrons at the RF cavities, becoming a natural background for losses identification. A new kind of beam loss monitors have been conceived to extend the sensitivity to the low energy region of the high intensity hadron accelerators. They are based on Micromegas detectors sensitive to fast neutrons. The appropriate configuration of the Micromegas operating conditions will allow a fast response, a sensitivity to small beam losses and a suppressed sensitivity to photons. In this paper the operation principle and the system developed for the European Spallation Source will be presented, with focus on the results obtained at different irradiation facilities. First time proof of operation in real conditions, with the detection of beam losses, will be also shown with measurements performed at LINAC4 (CERN)

    AGATA: mechanics and infrastructures

    No full text
    The successful operation of AGATA requires a complex mechanical support structure for the safe and reliable operation of the detectors. Three mechanical structures were designed for the scientific campaigns at LNL, GSI and GANIL, each accommodating an increasing number of detectors. The present phase of the project, to increase the number of detectors from 60 to 180 (the 4Ď€4\pi spectrometer), required a new concept in mechanical support. The detectors also require a suite of associated instrumentation, infrastructures and good system design for their optimum performance. This includes the automatic liquid nitrogen filling system, high and low voltage power supplies, and a series of signal cables and distribution systems. A well-designed electromagnetic compatibility across all the sub-systems is essential. An additional requirement is an easily accessible database that records the status of the wide range of components utilised on the project. This article describes all aspects of the mechanics and infrastructures

    Conceptual design of the AGATA 2Ď€ array at LNL

    No full text

    Conceptual design of the AGATA 2<math display="inline" id="d1e396" altimg="si24.svg"><mi>Ď€</mi></math> array at LNL

    No full text
    International audienceThe Advanced GAmma Tracking Array (AGATA) has been installed at Laboratori Nazionali di Legnaro (LNL), Italy. In this installation, AGATA will consist, at the beginning, of 13 AGATA triple clusters (ATCs) with an angular coverage of 1π, and progressively the number of ATCs will increase up to a 2π angular coverage. This setup will exploit both stable and radioactive ion beams delivered by the Tandem–PIAVE-ALPI accelerator complex and the SPES facility. The new implementation of AGATA at LNL will be used in two different configurations, firstly one coupled to the PRISMA large-acceptance magnetic spectrometer and lately a second one at Zero Degrees, along the beam line. These two configurations will allow us to cover a broad physics program, using different reaction mechanisms, such as Coulomb excitation, fusion-evaporation, transfer and fission at energies close to the Coulomb barrier. These setups have been designed to be coupled with a large variety of complementary detectors such as charged particle detectors, neutron detectors, heavy-ion detectors, high-energy γ-ray arrays, cryogenic and gasjet targets and the plunger device for lifetime measurements. We present in this paper the conceptual design, characteristics and performance figures of this implementation of AGATA at LNL

    Conceptual design of the AGATA 2<math display="inline" id="d1e396" altimg="si24.svg"><mi>Ď€</mi></math> array at LNL

    No full text
    International audienceThe Advanced GAmma Tracking Array (AGATA) has been installed at Laboratori Nazionali di Legnaro (LNL), Italy. In this installation, AGATA will consist, at the beginning, of 13 AGATA triple clusters (ATCs) with an angular coverage of 1π, and progressively the number of ATCs will increase up to a 2π angular coverage. This setup will exploit both stable and radioactive ion beams delivered by the Tandem–PIAVE-ALPI accelerator complex and the SPES facility. The new implementation of AGATA at LNL will be used in two different configurations, firstly one coupled to the PRISMA large-acceptance magnetic spectrometer and lately a second one at Zero Degrees, along the beam line. These two configurations will allow us to cover a broad physics program, using different reaction mechanisms, such as Coulomb excitation, fusion-evaporation, transfer and fission at energies close to the Coulomb barrier. These setups have been designed to be coupled with a large variety of complementary detectors such as charged particle detectors, neutron detectors, heavy-ion detectors, high-energy γ-ray arrays, cryogenic and gasjet targets and the plunger device for lifetime measurements. We present in this paper the conceptual design, characteristics and performance figures of this implementation of AGATA at LNL

    Conceptual design of the AGATA 1 pi array at GANIL

    No full text
    The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam gamma-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy gamma rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA l pi array are presented
    corecore