27 research outputs found

    The Drosophila FMRP and LARK RNA-binding proteins function together to regulate eye development and circadian behavior

    Get PDF
    Fragile X syndrome (FXS) is the most common form of hereditary mental retardation. FXS patients have a deficit for the fragile X mental retardation protein (FMRP) that results in abnormal neuronal dendritic spine morphology and behavioral phenotypes, including sleep abnormalities. In a Drosophila model of FXS, flies lacking the dfmr1 protein (dFMRP) have abnormal circadian rhythms apparently as a result of altered clock output. In this study, we present biochemical and genetic evidence that dFMRP interacts with a known clock output component, the LARK RNA-binding protein. Our studies demonstrate physical interactions between dFMRP and LARK, that the two proteins are present in a complex in vivo, and that LARK promotes the stability of dFMRP. Furthermore, we show genetic interactions between the corresponding genes indicating that dFMRP and LARK function together to regulate eye development and circadian behavior

    Recommendations for a nomenclature system for reporting methylation aberrations in imprinted domains

    Get PDF
    The analysis of DNA methylation has become routine in the pipeline for diagnosis of imprinting disorders, with many publications reporting aberrant methylation associated with imprinted differentially methylated regions (DMRs). However, comparisons between these studies are routinely hampered by the lack of consistency in reporting sites of methylation evaluated. To avoid confusion surrounding nomenclature, special care is needed to communicate results accurately, especially between scientists and other health care professionals. Within the European Network for Human Congenital Imprinting Disorders we have discussed these issues and designed a nomenclature for naming imprinted DMRs as well as for reporting methylation values. We apply these recommendations for imprinted DMRs that are commonly assayed in clinical laboratories and show how they support standardized database submission. The recommendations are in line with existing recommendations, most importantly the Human Genome Variation Society nomenclature, and should facilitate accurate reporting and data exchange among laboratories and thereby help to avoid future confusion

    Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain

    No full text
    Mental retardation is a pervasive societal problem, 25 times more common than blindness for example. Fragile X syndrome, the most common form of inherited mental retardation, is caused by mutations in the FMR1 gene. Fragile X patients display neurite morphology defects in the brain, suggesting that this may be the basis of their mental retardation. Drosophila contains a single homolog of FMR1, dfxr (also called dfmr1). We analyzed the role of dfxr in neurite development in three distinct neuronal classes. We find that DFXR is required for normal neurite extension, guidance, and branching. dfxr mutants also display strong eclosion failure and circadian rhythm defects. Interestingly, distinct neuronal cell types show different phenotypes, suggesting that dfxr differentially regulates diverse targets in the brain.status: publishe

    A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog

    No full text
    Abstract The accurate description of ancestry is essential to interpret, access, and integrate human genomics data, and to ensure that these benefit individuals from all ancestral backgrounds. However, there are no established guidelines for the representation of ancestry information. Here we describe a framework for the accurate and standardized description of sample ancestry, and validate it by application to the NHGRI-EBI GWAS Catalog. We confirm known biases and gaps in diversity, and find that African and Hispanic or Latin American ancestry populations contribute a disproportionately high number of associations. It is our hope that widespread adoption of this framework will lead to improved analysis, interpretation, and integration of human genomics data
    corecore