36 research outputs found

    Feasibility of using microbeads with holographic barcodes to track DNA specimens in the clinical molecular laboratory

    Get PDF
    We demonstrate the feasibility of using glass microbeads with a holographic barcode identifier to track DNA specimens in the molecular pathology laboratory. These beads can be added to peripheral blood specimens and are carried through automated DNA extraction protocols that use magnetic glass particles. We found that an adequate number of microbeads are consistently carried over during genomic DNA extraction to allow specimen identification, that the beads do not interfere with the performance of several different molecular assays, and that the beads and genomic DNA remain stable when stored together under regular storage conditions in the molecular pathology laboratory. The beads function as an internal, easily readable specimen barcode. This approach may be useful for identifying DNA specimens and reducing errors associated with molecular laboratory testing

    RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins

    Get PDF
    Pre-mRNA splicing requires a large number of RNA-binding proteins that have one or more RNA-recognition motifs (RRMs). Among these is the SR protein family, whose members are essential for splicing and are able to commit pre-mRNAs to the splicing pathway with overlapping but distinct substrate specificity. Some SR proteins, such as SC35, contain an N-terminal RRM and a C-terminal arginine/serine-rich (RS) domain, whereas others, such as SF2/ASF, also contain a second, atypical RRM. Although both the RRMs and the RS domain of SR proteins are required for constitutive splicing, it is unclear which domain(s) defines their substrate specificity, and whether two RRMs in a given SR protein function independently or act coordinately. Using domain swaps between SC35 and SF2/ASF and a functional commitment assay, we demonstrate that individual domains are functional modules, RS domains are interchangeable, and substrate specificity is defined by the RRMs. The atypical RRM of SF2/ASF does not appear to function alone in splicing, but can either activate or suppress the splicing specificity of an N-terminal RRM. Therefore, multiple RRMs in SR proteins act coordinately to achieve a unique spectrum of pre-mRNA substrate specificity

    Salicylic Acid-Dependent Expression of Host Genes in Compatible Arabidopsis-Virus Interactions

    No full text
    Plant viruses elicit the expression of common sets of genes in susceptible hosts. Studies in Arabidopsis (Arabidopsis thaliana) and tomato (Lycopersicon esculentum) indicate that at least one-third of the genes induced in common by viruses have been previously associated with plant defense and stress responses. The genetic and molecular requirements for the induction of these stress and defense-related genes during compatible host-virus interactions were investigated with a panel of Arabidopsis mutant and transgenic plants defective in one or more defense signaling pathways. pad4, eds5, NahG, npr1, jar1, ein2, sid2, eds1, and wild-type Columbia-0 and Wassilewskija-2 plants were infected with two different viruses, cucumber mosaic virus and oilseed rape mosaic virus. Gene expression was assayed by a high-throughput fiber-optic bead array consisting of 388 genes and by RNA gel blots. These analyses demonstrated that, in compatible host-virus interactions, the expression of the majority of defense-related genes is induced by a salicylic acid-dependent, NPR1-independent signaling pathway with a few notable exceptions that did require NPR1. Interestingly, none of the mutant or transgenic plants showed enhanced susceptibility to either cucumber mosaic virus or oilseed rape mosaic virus based on both symptoms and virus accumulation. This observation is in contrast to the enhanced disease susceptibility phenotypes that these mutations or transgenes confer to some bacterial and fungal pathogens. These experimental results suggest that expression of many defense-related genes in compatible host plants might share components of signaling pathways involved in incompatible host-pathogen interactions, but their increased expression has no negative effect on viral infection
    corecore