46 research outputs found

    TP53 polymorphism in plasma cell myeloma

    Get PDF
    Introduction. Significant and accessible predictive factors for bortezomib treatment in plasma cell myeloma (PCM) are still lacking. TP53 codon 72 polymorphism (P72R) results in proline (P) or arginine (R) at 72 amino acid position, which causes synthesis of proteins with distinct functions. The aims of our study were to: 1) analyze whether this polymorphism is associated with an increased risk of PCM; 2) study whether the P72R polymorphism affects overall survival (OS) among PCM patients; 3) assess the possible association of the P72R polymorphism with sensitivity to bortezomib in cell cultures derived from PCM patients. Material and methods. Genomic DNA from newly diagnosed 59 patients (without IgVH gene rearrangements and TP53 deletions) and 50 healthy blood donors were analyzed by RFLP-PCR to identify TP53 polymorphism. Chromosomal aberrations were detected by use of cIg-FISH. The lymphocyte cell cultures from a subgroup of 40 PCM patients were treated with bortezomib (1, 2 and 4 nM). Results. The P allele of the P72R polymorphism was more common than the R allele in PMC patients compared to controls (39% vs. 24%), and the difference was significant (p = 0.02). The PP and PR genotypes (in combina­tion) were more frequent among cases than in controls (65% vs. 42%, OR = 2.32, p = 0.04). At the cell culture level and 2 nM bortezomib concentration the PP genotype was associated with higher necrosis rates (10.5%) compared to the PR genotype (5.7%, p = 0.006) or the RR genotype (6.3%, p = 0.02); however, no effect of genotypes was observed at bortezomib concentrations of 1 and 4 nM. The shortest OS (12 months) was observed in patients with the PP genotype compared to patients with the PR or RR genotypes (20 months) (p = 0.04). Conclusions. The results suggest that P72R polymorphisms may be associated with an increased PCM risk and may affect OS of PCM patients. However, we saw no consistent results of the polymorphism effect on apoptosis and necrosis in cell cultures derived from PCM patients. Further studies are need in this regard

    Ticlopidine in Its Prodrug Form Is a Selective Inhibitor of Human NTPDase1

    No full text
    Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), like other ectonucleotidases, controls extracellular nucleotide levels and consequently their (patho)physiological responses such as in thrombosis, inflammation, and cancer. Selective NTPDase1 inhibitors would therefore be very useful. We previously observed that ticlopidine in its prodrug form, which does not affect P2 receptor activity, inhibited the recombinant form of human NTPDase1 (Ki=14 μM). Here we tested whether ticlopidine can be used as a selective inhibitor of NTPDase1. We confirmed that ticlopidine inhibits NTPDase1 in different forms and in different assays. The ADPase activity of intact HUVEC as well as of COS-7 cells transfected with human NTPDase1 was strongly inhibited by 100 µM ticlopidine, 99 and 86%, respectively. Ticlopidine (100 µM) completely inhibited the ATPase activity of NTPDase1 in situ as shown by enzyme histochemistry with human liver and pancreas sections. Ticlopidine also inhibited the activity of rat and mouse NTPDase1 and of potato apyrase. At 100 µM ticlopidine did not affect the activity of human NTPDase2, NTPDase3, and NTPDase8, nor of NPP1 and NPP3. Weak inhibition (10–20%) of NTPDase3 and -8 was observed at 1 mM ticlopidine. These results show that ticlopidine is a specific inhibitor of NTPDase1 that can be used in enzymatic and histochemistry assays

    A new protocol for ash wood modification : synthesis of hydrophobic and antibacterial brushes from the wood surface

    Get PDF
    The article presents the modification of ash wood via surface initiated activators regenerated by electron transfer atom transfer radical polymerization mediated by elemental silver (Ag(0) SI-ARGET ATRP) at a diminished catalyst concentration. Ash wood is functionalized with poly(methyl methacrylate) (PMMA) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) to yield wood grafted with PMMA-b-PDMAEMA-Br copolymers with hydrophobic and antibacterial properties. Fourier transform infrared (FT-IR) spectroscopy confirmed the covalent incorporation of functional ATRP initiation sites and polymer chains into the wood structure. The polymerization kinetics was followed by the analysis of the polymer grown in solution from the sacrificial initiator by proton nuclear magnetic resonance ((1)H NMR) and gel permeation chromatography (GPC). The polymer layer covalently attached to the wood surface was observed by scanning electron microscopy (SEM). The hydrophobic properties of hybrid materials were confirmed by water contact angle measurements. Water and sodium chloride salt aqueous solution uptake tests confirmed a significant improvement in resistance to the absorption of wood samples after modification with polymers. Antibacterial tests revealed that wood-QPDMAEMA-Br, as well as wood-PMMA-b-QPDMAEMA-Br, exhibited higher antibacterial activity against Gram-positive bacteria (Staphylococcus aureus) in comparison with Gram-negative bacteria (Escherichia coli). The paper presents an economic concept with ecological aspects of improving wood properties, which gives great opportunities to use the proposed approach in the production of functional hybrid materials for industry and high quality sports equipment, and in furniture production

    The Antioxidant, Antibacterial and Anti-Biofilm Properties of Rapeseed Creamed Honey Enriched with Selected Plant Superfoods

    No full text
    The aim of the study is to evaluate the effect of the addition of selected fruits and herbs belonging to the “superfoods” category for the bioactivity of a rapeseed honey matrix. Flavored creamed honeys with nine types of various additives (2 and 4% of content) were prepared and analyzed for the content of total phenols, flavonoids, antioxidant (FRAP, DPPH and ABTS) and antibacterial activity against four strains of bacteria. Additionally, the impact of three months of storage on the antioxidant properties of the products obtained was examined. The significant dose-dependent increase in the content of bioactive ingredients and antioxidant capacity in spiced honeys, as compared to control honey, was observed. The highest enrichment was obtained for the addition of powdered sea buckthorn leaves and black raspberry fruits. Honey with the addition of sea buckthorn leaves inhibited the growth of P. aeruginosa, S. aureus and K. pneumonia, whereas honeys with black raspberry and blackcurrant fruits showed activity only on the latter two strains. Furthermore, what is more interesting, honey supplemented with sea buckthorn leaf and black raspberry fruits inhibited S. aureus biofilm formation at the sub-minimum inhibitory concentrations (sub-MICs), showing a dose-dependent anti-biofilm effect

    Purine-Metabolizing Ectoenzymes Control IL-8 Production in Human Colon HT-29 Cells

    No full text
    Interleukin-8 (IL-8) plays key roles in both chronic inflammatory diseases and tumor modulation. We previously observed that IL-8 secretion and function can be modulated by nucleotide (P2) receptors. Here we investigated whether IL-8 release by intestinal epithelial HT-29 cells, a cancer cell line, is modulated by extracellular nucleotide metabolism. We first identified that HT-29 cells regulated adenosine and adenine nucleotide concentration at their surface by the expression of the ectoenzymes NTPDase2, ecto-5′-nucleotidase, and adenylate kinase. The expression of the ectoenzymes was evaluated by RT-PCR, qPCR, and immunoblotting, and their activity was analyzed by RP-HPLC of the products and by detection of Pi produced from the hydrolysis of ATP, ADP, and AMP. In response to poly (I:C), with or without ATP and/or ADP, HT-29 cells released IL-8 and this secretion was modulated by the presence of NTPDase2 and adenylate kinase. Taken together, these results demonstrate the presence of 3 ectoenzymes at the surface of HT-29 cells that control nucleotide levels and adenosine production (NTPDase2, ecto-5′-nucleotidase and adenylate kinase) and that P2 receptor-mediated signaling controls IL-8 release in HT-29 cells which is modulated by the presence of NTPDase2 and adenylate kinase
    corecore